30 research outputs found
RUNX3 Regulates Intercellular Adhesion Molecule 3 (ICAM-3) Expression during Macrophage Differentiation and Monocyte Extravasation
The adhesion molecule ICAM-3 belongs to the immunoglobulin gene superfamily and functions as a ligand for the β2 integrins LFA-1, Mac-1 and αdβ2. The expression of ICAM-3 is restricted to cells of the hematopoietic lineage. We present evidences that the ICAM-3 gene promoter exhibits a leukocyte-specific activity, as its activity is significantly higher in ICAM-3+ hematopoietic cell lines. The activity of the ICAM-3 gene promoter is dependent on the occupancy of RUNX cognate sequences both in vitro and in vivo, and whose integrity is required for RUNX responsiveness and for the cooperative actions of RUNX with transcription factors of the Ets and C/EBP families. Protein analysis revealed that ICAM-3 levels diminish upon monocyte-derived macrophage differentiation, monocyte transendothelial migration and dendritic cell maturation, changes that correlate with an increase in RUNX3. Importantly, disruption of RUNX-binding sites led to enhanced promoter activity, and small interfering RNA-mediated reduction of RUNX3 expression resulted in increased ICAM-3 mRNA levels. Altogether these results indicate that the ICAM-3 gene promoter is negatively regulated by RUNX transcription factors, which contribute to the leukocyte-restricted and the regulated expression of ICAM-3 during monocyte-to-macrophage differentiation and monocyte extravasation
Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells
Infection of BHK cells by Sindbis virus (SV) gives rise to a profound inhibition of cellular protein synthesis, whereas translation of viral subgenomic mRNA that encodes viral structural proteins, continues for hours. To gain further knowledge on the mechanism by which this subgenomic mRNA is translated, the requirements for some initiation factors (eIFs) and for the presence of the initiator AUG were examined both in infected and in uninfected cells. To this end, BHK cells were transfected with different SV replicons or with in vitro made SV subgenomic mRNAs after inactivation of some eIFs. Specifically, eIF4G was cleaved by expression of the poliovirus 2A protease (2Apro) and the alpha subunit of eIF2 was inactivated by phosphorylation induced by arsenite treatment. Moreover, cellular location of these and other translation components was analyzed in BHK infected cells by confocal microscopy. Cleavage of eIF4G by poliovirus 2Apro does not hamper translation of subgenomic mRNA in SV infected cells, but bisection of this factor blocks subgenomic mRNA translation in uninfected cells or in cell-free systems. SV infection induces phosphorylation of eIF2α, a process that is increased by arsenite treatment. Under these conditions, translation of subgenomic mRNA occurs to almost the same extent as controls in the infected cells but is drastically inhibited in uninfected cells. Notably, the correct initiation site on the subgenomic mRNA is still partially recognized when the initiation codon AUG is modified to other codons only in infected cells. Finally, immunolocalization of different eIFs reveals that eIF2 α and eIF4G are excluded from the foci, where viral RNA replication occurs, while eIF3, eEF2 and ribosomes concentrate in these regions. These findings support the notion that canonical initiation takes place when the subgenomic mRNA is translated out of the infection context, while initiation can occur without some eIFs and even at non-AUG codons in infected cells
A Genome-Wide Characterization of MicroRNA Genes in Maize
MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling identified 150 high-confidence genes within 26 miRNA families. For 25 families, expression was verified by deep-sequencing of small RNA libraries that were prepared from an assortment of maize tissues. PCR–RACE amplification of 68 miRNA transcript precursors, representing 18 families conserved across several plant species, showed that splice variation and the use of alternative transcriptional start and stop sites is common within this class of genes. Comparison of sequence variation data from diverse maize inbred lines versus teosinte accessions suggest that the mature miRNAs are under strong purifying selection while the flanking sequences evolve equivalently to other genes. Since maize is derived from an ancient tetraploid, the effect of whole-genome duplication on miRNA evolution was examined. We found that, like protein-coding genes, duplicated miRNA genes underwent extensive gene-loss, with ∼35% of ancestral sites retained as duplicate homoeologous miRNA genes. This number is higher than that observed with protein-coding genes. A search for putative miRNA targets indicated bias towards genes in regulatory and metabolic pathways. As maize is one of the principal models for plant growth and development, this study will serve as a foundation for future research into the functional roles of miRNA genes
Health Literacy and Parental Oral Health Knowledge, Beliefs, Behavior, and Status Among Parents of American Indian Newborns
ObjectiveTo examine the relationship between health literacy (HL) and parental oral health knowledge, beliefs, behavior, and self-reported oral health status (OHS) among parents of American Indian (AI) children.MethodsThis analysis used baseline data from a randomized controlled trial that tested an oral health intervention with parents of AI newborns. Participants were recruited in parent-child dyads (N = 579). Parents completed items assessing sociodemographic characteristics, HL, and parental oral health knowledge, beliefs, behavior, and self-reported OHS. We examined the correlation of HL with each oral health construct, controlling for parent age and income.ResultsOn average, parents felt quite confident in their HL skills, performed well on questions assessing parental oral health knowledge, and endorsed beliefs likely to encourage positive parental oral health behaviors (e.g., confidence that one can successfully engage in such behaviors). Parents with more limited HL had significantly less knowledge, perceived cavities to be less severe, perceived more barriers and fewer benefits to recommended oral health behaviors, were less confident they could engage in these behaviors, and were more likely to believe their children's oral health was under the control of the dentist or a matter of chance (P values < 0.001). Limited HL was not associated with behavior (P > 0.05) but was linked to worse self-reported OHS (P = 0.040).ConclusionsHL was associated with parental oral health knowledge, beliefs, and self-reported OHS. Oral health education interventions targeting AI families should facilitate development of knowledge and positive oral health beliefs among parents with more limited HL skills