95 research outputs found

    Response of different PTH assays to therapy with sevelamer or CaCO3 and active vitamin D sterols

    Get PDF
    Amino-terminally truncated parathyroid hormone (PTH) fragments are detected to differing degrees by first- and second-generation immunometric PTH assays (PTH-IMAs), and acute changes in serum calcium affect the proportion of these fragments in circulation. However, the effect of chronic calcium changes and different vitamin D doses on these PTH measurements remains to be defined. In this study, 60 pediatric dialysis patients, aged 13.9 ± 0.7 years, with secondary hyperparathyroidism were randomized to 8 months of therapy with oral vitamin D combined with either calcium carbonate (CaCO3) or sevelamer. Serum phosphorus levels did not differ between groups. Serum calcium levels rose from 9.3 ± 0.1 to 9.7 ± 0.1 mg/dl during CaCO3 therapy (p < 0.01 from baseline) but remained unchanged during sevelamer therapy. In the CaCO3 and sevelamer groups, baseline serum PTH levels (1st PTH-IMA; Nichols Institute Diagnostics, San Clemente, CA) were 964 ± 75 and 932 ± 89 pg/ml, and levels declined to 491 ± 55 and 543 ± 59 pg/ml, respectively (nonsignificant between groups). Patients treated with sevelamer received higher doses of vitamin D than those treated with CaCO3. The PTH values obtained by first- and second-generation PTH-IMAs correlated closely throughout therapy and the response of PTH was similar to both PTH-IMAs, despite differences in serum calcium levels

    Trabecular bone volume and osteoprotegerin expression in uremic rats given high calcium

    Get PDF
    Calcium (Ca)-containing phosphate binders have been recommended for the treatment of hyperphosphatemia in children with chronic kidney disease. To study the effects of high Ca levels on trabecular bone volume (BV) and osteoprotegerin (OPG) expression in uremic young rats, a model of marked overcorrection of secondary hyperparathyroidism was created by providing a diet of high Ca to 5/6 nephrectomized young rats (Nx-Ca) for 4 weeks. The results of chondrocyte proliferation and apoptosis, osteoclastic activity, OPG expression and BV were compared among intact rats given the control diet, intact rats given a high Ca diet and 5/6 nephrectomized rats given the control diet (Nx-Control) and the high Ca diet (Nx-Ca). Ionized Ca levels were higher and parathyroid hormone levels were lower in Nx-Ca rats than in the other groups. Final weight, final length and final tibial length of Nx-Ca rats were significantly less than those of the other groups, although the length gain did not differ among the groups. The hypertrophic zone width was markedly enlarged in Nx-Ca rats. Chondrocyte proliferation rates did not differ among the groups, whereas osteoclastic activity was decreased in Nx-Ca rats compared with the Nx-Control animals. The OPG expression and BV were increased in Nx-Ca rats compared with the Nx-Control rats. Increased BV should improve bone strength, whereas disturbance of osteoclastogenesis interferes with bone remodeling. Bone quality has yet to be determined in high Ca-fed uremic young rats

    Aluminum toxicity in childhood

    Full text link
    Aluminum intoxication is an iatrogenic disease caused by the use of aluminum compounds for phosphate binding and by the contamination of parenteral fluids. Although organ aluminum deposition was noted as early as 1880 and toxicity was documented in the 1960s, the inability to accurately measure serum and tissue aluminum prevented delineation of its toxic effects until the 1970s. Aluminum toxicity has now been conclusively shown to cause encephalopathy, metabolic bone disease, and microcytic anemia.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47831/1/467_2004_Article_BF00869743.pd

    The effect of fluoride on enamel and dentin formation in the uremic rat incisor

    Get PDF
    Renal impairment in children is associated with tooth defects that include enamel pitting and hypoplasia. However, the specific effects of uremia on tooth formation are not known. In this study, we used rat mandibular incisors, which continuously erupt and contain all stages of tooth formation, to characterize the effects of uremia on tooth formation. We also tested the hypothesis that uremia aggravates the fluoride (F)-induced changes in developing teeth. Rats were subjected to a two-stage 5/6 nephrectomy or sham operation and then exposed to 0 (control) or 50 ppm NaF in drinking water for 14 days. The effects of these treatments on food intake, body growth rate, and biochemical serum parameters for renal function and calcium metabolism were monitored. Nephrectomy reduced food intake and weight gain. Intake of F by nephrectomized rats increased plasma F levels twofold and further decreased food intake and body weight gain. Uremia affected formation of dentin and enamel and was more extensive than the effect of F alone. Uremia also significantly increased predentin width and induced deposition of large amounts of osteodentin-like matrix-containing cells in the pulp chamber. In enamel formation, the cells most sensitive to uremia were the transitional-stage ameloblasts. These data demonstrate that intake of F by rats with reduced renal function impairs F clearance from the plasma and aggravates the already negative effects of uremia on incisor tooth development

    What parathyroid hormone levels should we aim for in children with stage 5 chronic kidney disease; what is the evidence?

    Get PDF
    The bone disease that occurs as a result of chronic kidney disease (CKD) is not only debilitating but also linked to poor growth and cardiovascular disease. It is suspected that abnormal bone turnover is the main culprit for these poor outcomes. Plasma parathyroid hormone (PTH) levels are used as a surrogate marker of bone turnover, and there is a small number of studies in children that have attempted to identify the range of PTH levels that correlates with normal bone histology. It is clear that high PTH levels are associated with high bone turnover, although the range is wide. However, the ability of PTH levels to distinguish between low and normal bone turnover is less clear. This is an important issue, because current guidelines for calcium and phosphate management are based upon there being an “optimum” range for PTH. This editorial takes a critical look at the evidence upon which these recommendations are based

    1,25(OH)2D3 Alters Growth Plate Maturation and Bone Architecture in Young Rats with Normal Renal Function

    Get PDF
    Whereas detrimental effects of vitamin D deficiency are known over century, the effects of vitamin D receptor activation by 1,25(OH)2D3, the principal hormonal form of vitamin D, on the growing bone and its growth plate are less clear. Currently, 1,25(OH)2D3 is used in pediatric patients with chronic kidney disease and mineral and bone disorder (CKD-MBD) and is strongly associated with growth retardation. Here, we investigate the effect of 1,25(OH)2D3 treatment on bone development in normal young rats, unrelated to renal insufficiency. Young rats received daily i.p. injections of 1 µg/kg 1,25(OH)2D3 for one week, or intermittent 3 µg/kg 1,25(OH)2D3 for one month. Histological analysis revealed narrower tibial growth plates, predominantly in the hypertrophic zone of 1,25(OH)2D3-treated animals in both experimental protocols. This phenotype was supported by narrower distribution of aggrecan, collagens II and X mRNA, shown by in situ hybridization. Concomitant with altered chondrocyte maturation, 1,25(OH)2D3 increased chondrocyte proliferation and apoptosis in terminal hypertrophic cells. In vitro treatment of the chondrocytic cell line ATDC5 with 1,25(OH)2D3 lowered differentiation and increased proliferation dose and time-dependently. Micro-CT analysis of femurs from 1-week 1,25(OH)2D3-treated group revealed reduced cortical thickness, elevated cortical porosity, and higher trabecular number and thickness. 1-month administration resulted in a similar cortical phenotype but without effect on trabecular bone. Evaluation of fluorochrome binding with confocal microscopy revealed inhibiting effects of 1,25(OH)2D3 on intracortical bone formation. This study shows negative effects of 1,25(OH)2D3 on growth plate and bone which may contribute to the exacerbation of MBD in the CKD pediatric patients

    Chronic dialysis in the infant less than 1 year of age

    Full text link
    Dialysis in the infant carries a mortality rate of 16%. Institution of dialysis may be the result of adequate nutritional intake, but avoidance of nutritional intake should never be seen as a way to prevent dialysis. Increased caloric intake, usually via enteral feeding tubes, is needed for optimal growth in the infant with end-stage renal disease (ESRD) in order to attain adequate nutrition with resulting good growth. “Renal” formulae may be constituted as dilute (as in the polyuric infant) or concentrated (as in the anuric infant) to fit the infants needs. Peritoneal dialysis (PD) is the usual mode of renal replacement therapy (97%), with access via a surgically placed cuffed catheter with attention to the placement of the exit site in order to avoid fecal or urinary contamination. PD volumes of 30–40 ml/kg per pass or 800–1,200 ml/m 2 per pass usually result in dialysis adequacy. Additional dietary sodium (3–5 mEq/kg per day) and protein (3–4 g/kg per day) are needed, due to sodium and protein losses in the dialysate. Protein losses are associated with significant infectious morbidity and nonresponsiveness to routine immunizations. Hemodialysis (HD) can be performed either as single- or dual-needle access that have minimal dead space (less then 2 ml) and recirculation rate (less then 5%). Attnetion to extracorporeal blood volume (<10% of intravascular volume), blood flow rates (3–5 ml/kg per min), heparinization (activated clotting times), ultrafiltration (ultrafiltration monitor), and temperature control is imperative during each treatment. Because infants' nutrition is mostly fluid, HD may be needed 4–6 days/week (especially in the oligoanuric infant) to avoid excessive volume overload between treatments. At the end of the treatment a slow blood return with minimal saline rinse is needed to avoid hemodynamic compromise. Infant dialysis, although technically challenging with a significant morbidity and mortality rate, can be safely carried out in the infant with ESRD but requires infant-specific equipment and trained personnel.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47836/1/467_2004_Article_BF00867678.pd

    Nutrition in children with CRF and on dialysis

    Get PDF
    The objectives of this study are: (1) to understand the importance of nutrition in normal growth; (2) to review the methods of assessing nutritional status; (3) to review the dietary requirements of normal children throughout childhood, including protein, energy, vitamins and minerals; (4) to review recommendations for the nutritional requirements of children with chronic renal failure (CRF) and on dialysis; (5) to review reports of spontaneous nutritional intake in children with CRF and on dialysis; (6) to review the epidemiology of nutritional disturbances in renal disease, including height, weight and body composition; (7) to review the pathological mechanisms underlying poor appetite, abnormal metabolic rate and endocrine disturbances in renal disease; (8) to review the evidence for the benefit of dietetic input, dietary supplementation, nasogastric and gastrostomy feeds and intradialytic nutrition; (9) to review the effect of dialysis adequacy on nutrition; (10) to review the effect of nutrition on outcome

    Efficacy and safety of paricalcitol in children with stages 3 to 5 chronic kidney disease

    Get PDF
    BACKGROUND: Elevated intact parathyroid hormone (iPTH) levels can contribute to morbidity and mortality in children with chronic kidney disease (CKD). We evaluated the pharmacokinetics, efficacy, and safety of oral paricalcitol in reducing iPTH levels in children with stages 3-5 CKD.METHODS: Children aged 10-16 years with stages 3-5 CKD were enrolled in two phase 3 studies. The stage 3/4 CKD study characterized paricalcitol pharmacokinetics and compared the efficacy and safety of paricalcitol with placebo followed by an open-label period. The stage 5 CKD study evaluated the efficacy and safety of paricalcitol (no comparator) in children with stage 5 CKD undergoing dialysis.RESULTS: In the stage 3/4 CKD study, mean peak plasma concentration and area under the time curve from zero to infinity were 0.13 ng/mL and 2.87 ng•h/((or ng×h/))mL, respectively, for 12 children who received 3 μg paricalcitol. Thirty-six children were randomized to paricalcitol or placebo; 27.8% of the paricalcitol group achieved two consecutive iPTH reductions of ≥30% from baseline versus none of the placebo group (P = 0.045). Adverse events were higher in children who received placebo than in those administered paricalcitol during the double-blind treatment (88.9 vs. 38.9%; P = 0.005). In the stage 5 CKD study, eight children (61.5%) had two consecutive iPTH reductions of ≥30% from baseline, and five (38.5%) had two consecutive iPTH values of between 150 and 300 pg/mL. Clinically meaningful hypercalcemia occurred in 21% of children.CONCLUSIONS: Oral paricalcitol in children aged 10-16 years with stages 3-5 CKD reduced iPTH levels and the treatment was well tolerated. Results support an initiating dose of 1 μg paricalcitol 3 times weekly in children aged 10-16 years.</p
    corecore