103 research outputs found
Structure of MnO nanoparticles embedded into channel-type matrices
X-ray diffraction experiments were performed on MnO confined in mesoporous
silica SBA-15 and MCM-41 matrices with different channel diameters. The
measured patterns were analyzed by profile analysis and compared to numerical
simulations of the diffraction from confined nanoparticles. From the lineshape
and the specific shift of the diffraction reflections it was shown that the
embedded objects form ribbon-like structures in the SBA-15 matrices with
channels diameters of 47-87 {\AA}, and nanowire-like structures in the MCM-41
matrices with channels diameters of 24-35 {\AA}. In the latter case the
confined nanoparticles appear to be narrower than the channel diameters. The
physical reasons for the two different shapes of the confined nanoparticles are
discussed.Comment: 8 pages, including 9 postscript figures, uses revtex4.cl
Evolution of the magnetic phase transition in MnO confined to channel type matrices. Neutron diffraction study
Neutron diffraction studies of antiferromagnetic MnO confined to MCM-41 type
matrices with channel diameters 24-87 A demonstrate a continuous magnetic phase
transition in contrast to a discontinuous first order transition in the bulk.
The character of the magnetic transition transforms with decreasing channel
diameter, showing the decreasing critical exponent and transition temperature,
however the latter turns out to be above the N\'eel temperature for the bulk.
This enhancement is explained within the framework of Landau theory taking into
consideration the ternary interaction of the magnetic and associated structural
order parameters.Comment: 6 pages pdf file, including 4 figures, uses revtex4.cl
ESR of MnO embedded in silica nanoporous matrices with different topologies
Electron spin resonance (ESR) experiments were performed with
antiferromagnetic MnO confined within a porous vycor-type glass and within
MCM-type channel matrices. A signal from confined MnO shows two components from
crystallized and amorphous MnO and depends on the pore topology. Crystallized
MnO within a porous glass shows a behavior having many similarities to the
bulk. In contrast with the bulk the strong ESR signal due to disordered
"surface" spins is observed below the magnetic transition. With the decrease of
channel diameter the fraction of amorphous MnO increases while the amount of
crystallized MnO decreases. The mutual influence of amorphous and crystalline
MnO is observed in the matrices with a larger channel diameter. In the matrices
with a smaller channel diameter the ESR signal mainly originates from amorphous
MnO and its behavior is typical for the highly disordered magnetic system.Comment: 7 pages pdf file, 5 figure
Effect of nanosize BaZrO3 inclusions on vortex parameters in YBaCuO
We report on the field dependence of the microwave complex resistivity data
in YBaCuO/BaZrO films grown by PLD at various BaZrO
content. The data, analyzed within a recently developed general framework for
the mixed-state microwave response of superconductors, yield the field
dependence of the fluxon parameters such as the vortex viscosity and the
pinning constant. We find that pinning undergoes a change of regime when the
BaZrO content in the target increases from 2.5 mol.% to 5 mol.%.
Simultaneously, the vortex viscosity becomes an increasing function of the
applied magnetic field. We propose a scenario in which flux lines are pinned as
bundles, and a crossover from dilute point pins to dense c-axis correlated
defects takes place between 2.5 and 5 mol.% in the BZO concentration. Our data
are inconsistent with vortices occupying mainly the BaZrO sites at low
fields, and suggest instead that vortices occupy both BaZrO sites and
interstitials in the YBaCuO matrix, even at low fields.Comment: Presented at EUCAS 2009, to be published in J. Phys.:Conf. Serie
Field cooling memory effect in Bi2212 and Bi2223 single crystals
A memory effect in the Josephson vortex system created by magnetic field in
the highly anisotropic superconductors Bi2212 and Bi2223 is demonstrated using
microwave power absorption. This surprising effect appears despite a very low
viscosity of Josephson vortices compared to Abrikosov vortices. The
superconductor is field cooled in DC magnetic field H_{m} oriented parallel to
the CuO planes through the critical temperature T_{c} down to 4K, with
subsequent reduction of the field to zero and again above H_{m}. Large
microwave power absorption signal is observed at a magnetic field just above
the cooling field clearly indicating a memory effect. The dependence of the
signal on deviation of magnetic field from H_{m} is the same for a wide range
of H_{m} from 0.15T to 1.7T
Tunable coaxial cavity resonator for linear and nonlinear microwave characterization of superconducting wires
We discuss experimental results obtained using a tunable cylindrical coaxial
cavity constituted by an outer Cu cylinder and an inner Pb-BSCCO wire. We have
used this device for investigating the microwave response of the
superconducting wire, both in the linear and nonlinear regimes. In particular,
by tuning the different modes of the cavity to make them resonant at exactly
harmonic frequencies, we have detected the power emitted by the superconducting
inner wire at the second- and third-harmonic frequency of the driving field.
The results obtained in the nonlinear regime, whether for the microwave surface
impedance or the harmonic emission, are qualitatively accounted for considering
intergrain fluxon dynamics. The use of this kind of device can be of strong
interest to investigate and characterise wires of large dimensions to be used
for implementing superconducting-based microwave devices.Comment: 14 pages, 6 embedded figures, accepted for publication in Supercond.
Sci. Techno
Effective ionic-liquid microemulsion based electrodeposition of mesoporous Co-Pt films for methanol oxidation catalysis in alkaline media
Pt-based direct methanol fuel cells are attracting increasing interest as environmentally-friendly alternative energy sources. However, the high price of Pt and the difficulty to prepare favourable morphologies for catalysis (e.g., mesoporous materials) is hampering their development into feasible products. Here, we demonstrate a novel approach to efficiently grow mesoporous films of Pt-poor alloys (Co3Pt and CoPt3), based on electrodeposition in ionic liquid-in-water (IL/W) microemulsions. The high proportion of the electrolytic aqueous solution in the IL/W microemulsion favors a significant deposition rate, while the presence of IL drops induces the formation of highly mesoporous films. The mesoporous alloys, with pores in the 8-11 nm range, exhibit excellent durability in acidic and alkaline aggressive media, maintaining their peculiar morphology. The structures are very efficient for the catalysis of methanol electro-oxidation in alkaline media, with minimal poisoning of the catalysts. These results pave the way to develop simple, versatile environmentally friendly fuel cells catalysts, to commercialize new viable ecological alternative energy sources
Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles
Although cubic rock salt‐CoO has been extensively studied, the magnetic properties of the main nanoscale CoO polymorphs (hexagonal wurtzite and cubic zinc blende structures) are rather poorly understood. Here, a detailed magnetic and neutron diffraction study on zinc blende and wurtzite CoO nanoparticles is presented. The zinc blende‐CoO phase is antiferromagnetic with a 3rd type structure in a face‐centered cubic lattice and a Néel temperature of TN (zinc‐blende) ≈225 K. Wurtzite‐CoO also presents an antiferromagnetic order, TN (wurtzite) ≈109 K, although much more complex, with a 2nd type order along the c‐axis but an incommensurate order along the y‐axis. Importantly, the overall magnetic properties are overwhelmed by the uncompensated spins, which confer the system a ferromagnetic‐like behavior even at room temperature
Temperature Evolution of Sodium Nitrite Structure in a Restricted Geometry
The NaNO nanocomposite ferroelectric material in porous glass was
studied by neutron diffraction. For the first time the details of the crystal
structure including positions and anisotropic thermal parameters were
determined for the solid material, embedded in a porous matrix, in ferro- and
paraelectric phases. It is demonstrated that in the ferroelectric phase the
structure is consistent with bulk data but above transition temperature the
giant growth of amplitudes of thermal vibrations is observed, resulting in the
formation of a "premelted state". Such a conclusion is in a good agreement with
the results of dielectric measurements published earlier.Comment: 4 pages, 4 figure
- …