833 research outputs found

    DIFFERENCES IN BEHAVIORAL AND PHYSIOLOGICAL VARIABLES MEASURED WITH PRECISION DAIRY MONITORING TECHNOLOGIES ASSOCIATED WITH POSTPARTUM DISEASES

    Get PDF
    The transition period is defined as the three weeks before and three weeks after the cow calves. Transition cow diseases are considered production diseases. Precision dairy monitoring (PDM) technologies measure physiological, behavioral, and production indicators on individual animals to improve management strategies and farm performance. The objective of the first study was to assess how hypocalcemia, hyperketonemia, and metritis affected variables measured by PDM technologies. The objective of the second study was to use variables from multiple commercially available PDM to examine alert performance generated from different analyses

    The (1|1)-Centroid Problem on the Plane Concerning Distance Constraints

    Get PDF

    Thermodynamical Properties and Quasi-localized Energy of the Stringy Dyonic Black Hole Solution

    Full text link
    In this article, we calculate the heat flux passing through the horizon .TSrh. {\bf TS}|_{r_h} and the difference of energy between the Einstein and M{\o}ller prescription within the region M{\cal M}, in which is the region between outer horizon H+{\cal H}_+ and inner horizon H{\cal H}_-, for the modified GHS solution, KLOPP solution and CLH solution. The formula . E_{\rm Einstein}|_{\cal M} = . E_{\rm M{\o}ller}|_{\cal M} - \sum_{\partial {\cal M}} {\bf TS}$ is obeyed for the mGHS solution and the KLOPP solution, but not for the CLH solution. Also, we suggest a RN-like stringy dyonic black hole solution, which comes from the KLOPP solution under a dual transformation, and its thermodynamical properties are the same as the KLOPP solution

    Ixora parviflora Protects against UVB-Induced Photoaging by Inhibiting the Expression of MMPs, MAP Kinases, and COX-2 and by Promoting Type I Procollagen Synthesis

    Get PDF
    Ixora parviflora with high polyphenol content exhibited antioxidant activity and reducing UVB-induced intracellular reactive oxygen species production. In this study, results of the photoaging screening experiments revealed that IPE at 1000 μg/mL reduced the activity of bacterial collagenase by 92.7 ± 4.2% and reduced the activity of elastase by 32.6 ± 1.4%. Therefore, we investigated the mechanisms by which IPE exerts its anti-photoaging activity. IPE at 1 μg/mL led to an increase in type I procollagen expression and increased total collagen synthesis in fibroblasts at 5 μg/mL. We found that IPE inhibited MMP-1, MMP-3, and MMP-9 expression at doses of 1, 5, and 10 μg/mL, respectively, in fibroblasts exposed to UV irradiation (40 mJ/cm2). Gelatin zymography assay showed that IPE at 50 μg/mL inhibited MMP-9 secretion/activity in cultured fibroblasts after UVB exposure. In addition, IPE inhibited the phosphorylation of p38, ERK, and JNK induced by UVB. Furthermore, IPE inhibited the UVB-induced expression of Smad7. In addition, IPE at 1 μg/mL inhibited NO production and COX-2 expression in UV-exposed fibroblasts. These findings show that IPE exhibits anti-inflammatory and anti-photoaging activities, indicating that IPE could be a potential anti-aging agent

    Effects of human parvovirus B19 VP1 unique region protein on macrophage responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activity of secreted phospholipase A (sPLA2) has been implicated in a wide range of cellular responses. However, little is known about the function of human parvovirus B19-VP1 unique region (VP1u) with sPLA2 activity on macrophage.</p> <p>Methods</p> <p>To investigate the roles of B19-VP1u in response to macrophage, phospholipase A2 activity, cell migration assay, phagocytosis activity, metalloproteinase assay, RT-PCR and immunoblotting were performed.</p> <p>Results</p> <p>In the present study, we report that migration, phagocytosis, IL-6, IL-1β mRNA, and MMP9 activity are significantly increased in RAW264.7 cells by B19-VP1u protein with sPLA2 activity, but not by B19-VP1uD175A protein that is mutated and lacks sPLA2 activity. Additionally, significant increases of phosphorylated ERK1/2 and JNK proteins were detected in macrophages that were treated with B19-VP1u protein, but not when they were treated with B19-VP1uD175A protein.</p> <p>Conclusion</p> <p>Taken together, our experimental results suggest that B19-VP1u with sPLA2 activity affects production of IL-6, IL-1β mRNA, and MMP9 activity, possibly through the involvement of ERK1/2 and JNK signaling pathways. These findings could provide clues in understanding the role of B19-VP1u and its sPLA2 enzymatic activity in B19 infection and B19-related diseases.</p

    Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen therapy (HBOT) is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS), is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs.</p> <p>Results</p> <p>Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS) was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model.</p> <p>Conclusions</p> <p>The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.</p

    Maintaining the structural integrity of thebamboo mosaic virus 3′ untranslated region isnecessary for retaining the catalytic constant forminus-strand RNA synthesis

    Get PDF
    Background: Bamboo mosaic virus (BaMV) and the Potato virus X (PVX) are members of the genus Potexvirus andhave a single-stranded positive-sense RNA genome. The 3′-untranslated region (UTR) of the BaMV RNA genomewas mapped structurally into ABC (a cloverleaf-like), D (a stem-loop), and E (pseudoknot) domains. The BaMVreplicase complex that was isolated from the infected plants was able to recognize the 3′ UTR of PVX RNA toinitiate minus-strand RNA synthesis in vitro.Results: To investigate whether the 3′ UTR of PVX RNA is also compatible with BaMV replicase in vivo, weconstructed chimera mutants using a BaMV backbone containing the PVX 3′ UTR, which was inserted in or used toreplace the various domains in the 3′ UTR of BaMV. None of the mutants, except for the mutant with the PVX3′ UTR inserted upstream of the BaMV 3′ UTR, exhibited a detectable accumulation of viral RNA in Nicotianabenthamiana plants. The in vitro BaMV RdRp replication assay demonstrated that the RNA products were generatedby the short RNA transcripts, which were derived from the chimera mutants to various extents. Furthermore, theVmax/KM of the BaMV 3′ UTR (rABCDE) was approximately three fold higher than rABCP, rP, and rDE in minus-strandRNA synthesis. These mutants failed to accumulate viral products in protoplasts and plants, but were adequatelyreplicated in vitro.Conclusions: Among the various studied BaMV/PVX chimera mutants, the BaMV-S/PABCDE that containednon-interrupted BaMV 3′ UTR was the only mutant that exhibited a wild-type level of viral product accumulation inprotoplasts and plants. These results indicate that the continuity of the domains in the 3′ UTR of BaMV RNA wasnot interrupted and the domains were not replaced with the 3′ UTR of PVX RNA in vivo

    Determination of aflatoxin B1 level in rice (Oryza sativa L.) through near-infrared spectroscopy and an improved simulated annealing variable selection method

    Get PDF
    Direct quantification analysis of near-infrared (NIR) spectra is challenging because the number of spectral variables is usually considerably higher than the number of samples. To mitigate the so-called curse of dimensionality, var�iable selection is often performed before multivariate calibration. There has been much work in this regard, where the developed variable selection method can be categorized as individual variable selection, such as uninformative variable elimination or variable importance in projection, and continuous interval variable selection method such as interval partial least squares or moving window partial least squares. In this study, a new individual variable se�lection method, modified simulated annealing (MSA), was proposed and used in conjunction with the partial least squares regression (PLSR) model. The interpretability of the selected variables in the determination of aflatoxin B1 levels in white rice was assessed. The results revealed that the PLSR model combined with MSA not only yielded higher accuracy than the full-spectrum PLSR but also successfully shrank the variable space. The developed simplified PLSR model using MSA produced satisfactory performances, with root mean square error of calibration (RMSEC) of 0.11 μg/kg and 0.56 μg/kg, and root mean square error of prediction (RMSEP) of 7.16 μg/kg and 14.42 μg/kg, were obtained for the low-aflatoxin B1-level- and high-aflatoxin-B1-level samples, respectively. Specifically, the MSA-based models yielded improvements of 97.80% (calibration set) and 44.62% (prediction set) as well as 95.85% (calibration set) and 62.57% (prediction set) for both datasets when compared with the full-spectrum PLSR (low aflatoxin: RMSEC = 5.02 μg/kg, RMSEP = 12.93 μg/kg; high aflatoxin: RMSEC = 13.50 μg/kg, RMSEP = 38.53 μg/kg). Compared with the baseline method of simulated annealing (SA) (low aflatoxin: RMSEC = 0.21 μg/kg, RMSEP = 9.78 μg/kg; high aflatoxin: RMSEC = 12.27 μg/kg, RMSEP = 38.53 μg/kg), the MSA significantly improved the predictive performance of the regression models, with the number of selected variables being almost half of that in the SA. A comparison with other commonly used variable selection methods of selectivity ratio (low aflatoxin: RMSEC = 6.09 μg/kg, RMSEP = 13.75 μg/kg; high aflatoxin: RMSEC = 13.74 μg/kg, RMSEP = 41.13 μg/kg), unin�formative variable elimination (low aflatoxin: RMSEC = 0.32 μg/kg, RMSEP = 5.11 μg/kg; high aflatoxin: RMSEC = 3.80 μg/kg, RMSEP = 17.76 μg/kg), and variable importance in projection (low aflatoxin: RMSEC = 2.67 μg/kg, RMSEP = 10.71 μg/kg; high aflatoxin: RMSEC = 13.51 μg/kg, RMSEP = 32.53 μg/kg) also indicated the promising efficacy of the proposed MSA
    corecore