
The (1|1)-Centroid Problem on the Plane
Concerning Distance Constraints∗

Hung-I Yu1, Tien-Ching Lin2, and Der-Tsai Lee3

1 Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
herbert@iis.sinica.edu.tw

2 Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
kero@iis.sinica.edu.tw

3 Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
dtlee@iis.sinica.edu.tw

Abstract
In 1982, Drezner proposed the (1|1)-centroid problem on the plane, in which two players, called
the leader and the follower, open facilities to provide service to customers in a competitive manner.
The leader opens the first facility, and then the follower opens the second. Each customer will
patronize the facility closest to him (ties broken in favor of the leader’s one), thereby decides the
market share of the two players. The goal is to find the best position for the leader’s facility so
that his market share is maximized. The best algorithm for this problem is an O(n2 logn)-time
parametric search approach, which searches over the space of possible market share values.

In the same paper, Drezner also proposed a general version of (1|1)-centroid problem by
introducing a minimal distance constraint R, such that the follower’s facility is not allowed to
be located within a distance R from the leader’s. He proposed an O(n5 logn)-time algorithm for
this general version by identifying O(n4) points as the candidates of the optimal solution and
checking the market share for each of them. In this paper, we develop a new parametric search
approach searching over the O(n4) candidate points, and present an O(n2 logn)-time algorithm
for the general version, thereby closing the O(n3) gap between the two bounds.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, F.2.2
Nonnumerical Algorithms and Problems

Keywords and phrases competitive facility, Euclidean plane, parametric search

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.64

1 Introduction

In 1929, economist Hotelling introduced the first competitive location problem in his seminal
paper [13]. Since then, the subject of competitive facility location has been extensively
studied by researchers in the fields of spatial economics, social and political sciences, and
operations research, and spawned hundreds of contributions in the literature. The interested
reader is referred to the following survey papers [1, 4, 8, 9, 10, 12, 17, 19].

Hakimi [11] and Drezner [6] independently proposed a series of competitive location
problems in a leader-follower framework. The framework is briefly described as follows.
There are n customers in the market, and each is endowed with a certain buying power.
Two players, called the leader and the follower, sequentially open facilities to attract the

∗ Research supported by the Ministry of Science and Technology under Grants MOST 104-2221-E-001-031,
104-2221-E-001-032.

© Hung-I Yu, Tien-Ching Lin, and Der-Tsai Lee;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 64; pp. 64:1–64:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 The (1|1)-Centroid Problem on the Plane Concerning Distance Constraints

buying power of customers. At first, the leader opens his p facilities, and then the follower
opens another r facilities. Each customer will patronize the closest facility with all buying
power (ties broken in favor of the leader’s ones), thereby deciding the market share of the
two players. Since both players ask for market share maximization, two competitive facility
location problems are defined. Given that the leader locates his p facilities at the set Xp

of p points, the follower wants to locate his r facilities in order to attract the most buying
power, called the (r|Xp)-medianoid problem. On the other hand, knowing that the follower
will react with maximization strategy, the leader wants to locate his p facilities in order to
retain the most buying power against the competition, called the (r|p)-centroid problem.

Drezner [6] first proposed to study the two competitive facility location problems on
the Euclidean plane. Since then, several related results [5, 7, 12, 14] have been obtained
for different values of r and p. Due to page limit, here we introduce only previous results
about the case r = p = 1. For the (1|X1)-medianoid problem, Drezner [6] showed that there
exists an optimal solution arbitrarily close to X1, and solved the problem in O(n logn) time
by a sweeping technique. Later, Lee and Wu [14] obtained an Ω(n logn) lower bound for
the (1|X1)-medianoid problem, and thus proved the optimality of Drezner’s result. For the
(1|1)-centroid problem, Drezner [6] developed a parametric search approach that searches over
the space of O(n2) possible market share values, along with an O(n4)-time test procedure
constructing and solving a linear program of O(n2) constraints, and gave an O(n4 logn)-time
algorithm. Then, by improving the test procedure via Megiddo’s linear-time result [16] for
solving linear programs, Hakimi [12] reduced the time complexity to O(n2 logn).

In [6], Drezner also proposed a more general setting for the leader-follower framework
by introducing a minimal distance constraint R ≥ 0 into the (1|X1)-medianoid problem
and the (1|1)-centroid problem, such that the follower’s facility is not allowed to be located
within a distance R from the leader’s. The augmented problems are respectively called the
(1|X1)R-medianoid problem and (1|1)R-centroid problem in this paper. Drezner showed that
the (1|X1)R-medianoid problem can also be solved in O(n logn) time by using nearly the same
proof and technique as for the (1|X1)-medianoid problem. However, for the (1|1)R-centroid
problem, he argued that it is hard to generalize the parametric approach approach for the
(1|1)-centroid problem to solve this general version, due to the change of problem properties.
Then, he gave an O(n5 logn)-time algorithm by identifying O(n4) candidate points on the
plane, which contain at least one optimal solution, and performing medianoid computation
on each of them. So far, the O(n3) gap between the two centroid problems remains open.

In this paper, we propose an O(n2 logn)-time algorithm for the (1|1)R-centroid problem
on the Euclidean plane, thereby closing the gap that has existed for decades. Instead of
searching over market share values, we develop a new approach based on a different parametric
search technique by searching over the O(n4) candidate points mentioned in [6]. This is
made possible by making a critical observation on the distribution of optimal solutions for
the (1|X1)R-medianoid problem given X1, which provides us a useful tool to prune candidate
points with respect to X1. We then extend the usage of this tool to design a key procedure
to prune candidates with respect to a given vertical line. Due to page limits, most of the
proofs are omitted.

The rest of this paper is organized as follows. Section 2 gives formal problem definitions
and describes previous results in [6, 12]. In Section 3, we make the observation on the
(1|X1)R-medianoid problem, and use it to find a “local” centroid on a given line. This result
is then extended as a new pruning procedure with respect to any given line in Section 4,
and utilized in our parametric search approach for the (1|1)R-centroid problem. Finally, in
Section 5, we give some concluding remarks.

H-. I Yu, T-. C. Lin, and D. T. Lee 64:3

2 Notations and Preliminary Results

Let V = {v1, v2, · · · , vn} be a set of n points on the Euclidean plane R2, as the representatives
of the n customers. Each point vi ∈ V is assigned a positive weight w(vi), representing
its buying power. To simplify the presentation, we assume that the points in V are in
general position, that is, no three points are collinear and no two points share a common x
or y-coordinate.

Let d(u,w) denote the Euclidean distance between any two points u,w ∈ R2. For any set
Z of points on the plane, we define W (Z) =

∑
{w(v)|v ∈ V

⋂
Z}. Suppose that the leader

has located his facility at X1 = {x}, which is shortened as x for simplicity. Due to the minimal
distance constraint R mentioned in [6], any point y′ ∈ R2 with d(y′, x) < R is infeasible to
be the follower’s choice. If the follower locates his facility at some feasible point y, the set of
customers patronizing y instead of x is defined as V (y|x) = {v ∈ V |d(v, y) < d(v, x)}, with
their total buying power W (y|x) = W (V (y|x)). Then, the largest market share that the
follower can capture is denoted by the function W ∗(x) = maxy∈R2,d(y,x)≥RW (y|x), which is
called the weight loss of x. Given a point x ∈ R2, the (1|x)R-medianoid problem is to find a
(1|x)R-medianoid, which is a feasible point y∗ ∈ R2 such that W (y∗|x) = W ∗(x).

In contrast, the leader tries to minimize the weight loss of his own facility by finding
a point x∗ ∈ R2 such that W ∗(x∗) ≤ W ∗(x) for any point x ∈ R2. The (1|1)R-centroid
problem is to find a (1|1)R-centroid, which is a point x∗ minimizing its own weight loss.
Note that, when R = 0, the two problems degenerate to the (1|x)-medianoid problem and
(1|1)-centroid problem.

2.1 Previous approaches
In this subsection, we briefly review previous results for the (1|x)R-medianoid, (1|1)-centroid,
and (1|1)R-centroid problems in [6, 12], so as to derive properties essential to our approach.

Let L be an arbitrary line, which partitions the Euclidean plane into two half-planes. For
any point y /∈ L, we define H(L, y) as the closed half-plane including L and y, and H−(L, y)
as the open half-plane H(L, y)\L. For any two distinct points x, y ∈ R2, let B(y|x) denote
the perpendicular bisector of xy, the line segment connecting x and y.

Given an arbitrary point x ∈ R2, we first describe the algorithm for finding a (1|x)R-
medianoid in [6]. Let y be a feasible point other than x, and y′ be some point on the open
line segment xy\{x, y}. We can see that H−(B(y|x), y) ⊂ H−(B(y′|x), y′), which implies
the fact that W (y′|x) = W (H−(B(y′|x), y′)) ≥W (H−(B(y|x), y)) = W (y|x), It shows that
moving y toward x does not diminish its weight capture, thereby follows the lemma.

I Lemma 1 ([6]). There exists a (1|x)R-medianoid in {y | y ∈ R2, d(x, y) = R}.

For any point z ∈ R2, let CR(z) and Cγ(z) be the circles centered at z with radii R
and γ = R/2, respectively. By Lemma 1, finding a (1|x)R-medianoid can be reduced to
searching a point y on CR(x) maximizing W (y|x). Since the perpendicular bisector B(y|x)
of each point y on CR(x) is a tangent line to the circle Cγ(x), the searching of y on CR(x) is
equivalent to finding a tangent line to Cγ(x) that partitions the most weight from x. The
latter problem can be solved in O(n logn) time as follows. For each v ∈ V outside Cγ(x), we
calculate its two tangent lines to Cγ(x). Then, by sorting these tangent lines according to
the polar angles of their corresponding tangent points with respect to x, we can use an angle
sweeping technique to check how much weight they partition.

I Theorem 2 ([6]). Given a point x ∈ R2, the (1|x)R-medianoid problem can be solved in
O(n logn) time.

ISAAC 2016

64:4 The (1|1)-Centroid Problem on the Plane Concerning Distance Constraints

Next, we describe the algorithm of the (1|1)R-centroid problem in [6]. Let S be a subset
of V . We define C(S) to be the set of all circles Cγ(v), v ∈ S, and CH(C(S)) to be the
convex hull of these circles. For any positive number W0, let I(W0) be the intersection of
all convex hulls CH(C(S)), where S ⊆ V and W (S) ≥W0. Drezner [6] argued that the set
of all (1|1)R-centroids is equivalent to the intersection I(W0) for the smallest possible W0.
We slightly clarify his argument below. Let W = {W (y|x) | x, y ∈ R2, d(x, y) ≥ R}. The
following lemma can be obtained.

I Lemma 3. Let W ∗0 be the smallest number in W such that I(W ∗0) is not null. A point x
is a (1|1)R-centroid if and only if x ∈ I(W ∗0).

Although it is hard to compute I(W ∗0) itself, we can find its vertices as solutions to the
(1|1)R-centroid problem. Let T be the set of outer tangent lines of all pairs of circles in
C(V). For any subset S ⊆ V , the boundary of CH(C(S)) is formed by segments of lines in
T and arcs of circles in C(V). Since I(W0) is an intersection of such convex hulls, its vertices
must fall within the set of intersection points between lines in T , between circles in C(V),
and between one line in T and one circle in C(V). Let T × T , C(V)× C(V), and T × C(V)
denote the three sets of intersection points, respectively. We have the lemma below.

I Lemma 4 ([6]). There exists a (1|1)R-centroid in T × T , C(V)× C(V), and T × C(V).

Obviously, there are at most O(n4) intersection points, which can be viewed as the
candidates of being (1|1)R-centroids. Drezner thus gave an algorithm by evaluating the
weight loss of each candidate by Theorem 2.

I Theorem 5 ([6]). The (1|1)R-centroid problem can be solved in O(n5 logn) time.

We remark that, when R = 0, CH(C(S)) for any S ⊆ V degenerates to a convex polygon,
so does I(W0) for any given W0, if not null. Drezner [6] proved that in this case I(W0) is
equivalent to the intersection of all half-planes H with W (H) ≥W0. Thus, whether I(W0)
is null can be determined by constructing and solving a linear program of O(n2) constraints,
which takes O(n2) time by Megiddo’s result [16]. Since |W| = O(n2), according to Lemma 3
the (1|1)-centroid problem can be solved in O(n2 logn) time [12], by applying parametric
search over W for W ∗0 . Unfortunately, it is hard to generalize this idea to the case R > 0.

3 Local (1|1)R-Centroid within a Line

In this section, we analyze the properties of (1|x)R-medianoids of a given point x in Subsec-
tion 3.1, and derive a procedure that prunes candidate points with respect to x. Applying
this procedure, we study a restricted version of the (1|1)R-centroid problem in Subsection 3.2,
in which the leader’s choice is limited to a given line L, and obtain an O(n log2 n)-time
algorithm. The algorithm is then extended as the basis of the vertical-line test procedure for
the parametric search approach in Section 4.

3.1 Pruning with Respect to a Point
Given a point x ∈ R2 and an angle θ between 0 and 2π, let y(θ|x) be the point on CR(x) with
polar angle θ with respect to x.1 We defineMA(x) = {θ |W (y(θ|x)|x) = W ∗(x), 0 ≤ θ < 2π},
that is, the set of angles θ maximizing W (y(θ|x)|x). It can be observed that, for any

1 We assume that a polar angle is measured counterclockwise from the positive x-axis.

H-. I Yu, T-. C. Lin, and D. T. Lee 64:5

θ ∈ MA(x) and sufficiently small ε, both θ + ε and θ − ε belong to MA(x), because each
v ∈ V (y(θ|x)|x) does not intersect B(y(θ|x)|x) by definition. This implies that angles in
MA(x) form open angle interval(s) of non-zero length.

To simplify the terms, let W (θ|x) = W (y(θ|x)|x) and B(θ|x) = B(y(θ|x)|x) in the
remaining parts. Also, let F (θ|x) be the line passing through x and parallel to B(θ|x). The
following lemma provides the basis for pruning candidates.

I Lemma 6. Let x ∈ R2 be an arbitrary point, and θ be an angle in MA(x). For any point
x′ /∈ H−(F (θ|x), y(θ|x)), W ∗(x′) ≥W ∗(x).

This lemma tells us that, given a point x and an angle θ ∈ MA(x), all points not in
H−(F (θ|x), y(θ|x)) can be ignored while finding (1|1)R-centroids, as their weight losses are
no less than that of x. Besides, the distribution of angles in MA(x) is also meaningful. Let
CA(x) be the minimum angle interval covering all angles in MA(x), and δ(CA(x)) be its
angle span in radians. Since MA(x) consists of open angle interval(s) of non-zero length,
CA(x) is also an open interval and δ(CA(x)) > 0. Moreover, we can derive the following.

I Lemma 7. If δ(CA(x)) > π, x is a (1|1)R-centroid.

We call a point x satisfying Lemma 7 a strong (1|1)R-centroid, since its discovery gives
an immediate solution to the (1|1)R-centroid problem. Note that there are problem instances
in which no strong (1|1)R-centroids exist.

Suppose that δ(CA(x)) ≤ π for some point x ∈ R2. Let Wedge(x) denote the wedge of x,
defined as the intersection of the two half-planes H(F (θb|x), y(θb|x)) and H(F (θe|x), y(θe|x)),
where θb and θe are the beginning and ending angles of CA(x), respectively. Wedge(x)
consists of the two half-lines extending from x, defined by F (θe|x) and F (θb|x), and the
infinite region lying between them. The counterclockwise (CCW) angle between the two
half-lines is denoted by δ(Wedge(x)). Since 0 < δ(CA(x)) ≤ π, we have that Wedge(x) 6= ∅
and 0 ≤ δ(Wedge(x)) < π.

It should be emphasized that Wedge(x) is a computational byproduct of CA(x) when x
is not a strong (1|1)R-centroid. In other words, not every point has its wedge. Therefore, we
make the following assumption (or restriction) in order to avoid the misuse of Wedge(x).

I Assumption 8. Whenever Wedge(x) is mentioned, the point x has been found not to be a
strong (1|1)R-centroid, either by computation or by properties. Equivalently, δ(CA(x)) ≤ π.

The following lemma makes Wedge(x) our main tool for prune-and-search. (Note that
its proof is not trivial, since by definition θb and θe do not belong to CA(x) and MA(x).)

I Lemma 9. Let x ∈ R2 be an arbitrary point. For any point x′ /∈ Wedge(x), W ∗(x′) ≥
W ∗(x).

The computation of Wedge(x) is simple. We first compute W ∗(x) in O(n logn) time by
Theorem 2. Then, by reusing the sweeping technique, we can obtain MA(x) and CA(x) in
O(n) time and, if x is not a strong (1|1)R-centroid, Wedge(x) in O(1) time.

I Lemma 10. Given a point x ∈ R2, MA(x), CA(x), and Wedge(x) can be computed in
O(n logn) time.

3.2 Searching on a Line
Although wedges can be used to prune candidate points, the performance is not stable, since
wedges of different points have distinct angle intervals and spans. However, they work fine

ISAAC 2016

64:6 The (1|1)-Centroid Problem on the Plane Concerning Distance Constraints

with lines by Assumption 8. Here we show how to use the wedges to compute a local optimal
point on a given line, i.e. a point x with W ∗(x) ≤W ∗(x′) for any point x′ on the line.

Let L be an arbitrary line, which is assumed to be non-horizontal for ease of discussion.
For any point x on L, we can compute Wedge(x) and make use of it for pruning purposes
by defining its direction with respect to L. Since δ(Wedge(x)) < π by definition, there are
only three categories of directions according to the intersection of Wedge(x) and L:
Upward – the intersection is the half-line of L above and including x;
Downward – the intersection is the half-line of L below and including x;
Sideward – the intersection is x itself.
If Wedge(x) is sideward, x is a local optimal point on L, since by Lemma 9 W ∗(x) ≤
W ∗(x′) ∀ x′ ∈ L. Otherwise, either Wedge(x) is upward or downward, the points on the
opposite half of L can be pruned by Lemma 9. It shows that computing wedges acts as a
predictable tool for pruning points on L.

Next, we list sets of breakpoints on L in which a local optimal point exists. Recall that T
is the set of outer tangent lines of all pairs of circles in C(V). We define the T -breakpoints as
the set L× T of intersection points between L and lines in T , and the C-breakpoints as the
set L× C(V) of intersection points between L and circles in C(V). (Note that outer tangent
lines parallel to L can be ignored while defining breakpoints.) We have the following lemma
for breakpoints.

I Lemma 11. There exists a local optimal point x∗L which is also a breakpoint.

Since |L × T | = O(n2) and |L × C(V)| = O(n), we can sort all breakpoints on L in
O(n2 logn) time according to the decreasing order of their y-coordinates, and, by Lemma 11,
perform binary search via wedges to find a local optimal point x∗L among them in O(n logn×
logn) = O(n log2 n) time. Thus, the restricted problem is trivially solved in O(n2 logn) time.
In the following, we however give a more complicated algorithm to deal with the case that
the line L is given as a query. The algorithm consists of an O(n2 logn)-time preprocessing
and an O(n log2 n)-time procedure to find x∗L on L.

The preprocessing itself is very simple. For each point v ∈ V , we compute a sequence
P (v), consisting of points in V \{v} sorted in increasing order of their polar angles with
respect to v. The computation for all v ∈ V takes O(n2 logn) time in total. We will show
that, for any given line L, O(n) sorted sequences of breakpoints can be obtained from these
pre-computed sequences in O(n logn) time, and can be used to replace the role of the sorted
sequence of all breakpoints while performing binary search on L.

For any two points v ∈ V and z ∈ R2, let T r(z|v) be the outer tangent line of Cγ(v) and
Cγ(z) to the right of the line from v to z. Similarly, let T l(z|v) be the outer tangent line
to the left. Moreover, let trL(z|v) and tlL(z|v) be the points at which T r(z|v) and T l(z|v)
intersect with L, respectively. We partition T into O(n) sets T r(v) = {T r(vi|v)|vi ∈ V \{v}}
and T l(v) = {T l(vi|v)|vi ∈ V \{v}} for v ∈ V , and for each set consider its corresponding
T -breakpoints independently.

We discuss the set of T -breakpoints L× T r(v) first. Let v be an arbitrary point in V .
By general position assumption, we can observe that, in some consecutive subsequences
of P (v), points vi are listed in the same order as their corresponding breakpoints trL(vi|v)
in decreasing y-coordinates, whereas the order of points in other consecutive subsequences
correspond to that of breakpoints in increasing y-coordinates. Thus, we can partition P (v)
into O(1) consecutive subsequences to represent L× T r(v), as shown in the following.

I Lemma 12. For each v ∈ V , we can construct O(1) sequences of T -breakpoints on L in
O(logn) time, which satisfy the following statements:

H-. I Yu, T-. C. Lin, and D. T. Lee 64:7

(a) Each sequence is of length O(n).
(b) Breakpoints in each sequence are sorted in decreasing y-coordinates.
(c) The union of breakpoints in all sequences form L× T r(v).

By Lemma 12, the O(1) sorted sequences can replace the role of L×T r(v). Symmetrically,
we can also obtain a similar lemma constructing another O(1) sorted sequences of breakpoints
to replace L×T l(v). By applying such a construction to all v ∈ V , in O(n logn) time we can
construct total O(n) sorted sequences of length O(n), whose union is equivalent to L× T .
Moreover, since |L × C(V)| = O(n), we can directly arrange them into a sorted sequence
in O(n logn) time. Consequently, all breakpoints on L are partitioned into N0 = O(n)
sequences, each of length O(n) and sorted in decreasing y-coordinates.

The searching of x∗L in the N0 sorted sequences is done by parametric search technique
for parallel binary searches, introduced in [2]. For each sorted sequence, we obtain its middle
element, and associate it with a weight. Then, we compute the weighted median x of the
N0 middle elements [18]. Finally, we apply Lemma 10 on x, and prune breakpoints not
in Wedge(x) for every sequence. By proper weighting scheme (details omitted), the total
number of breakpoints in all sequences will be reduced by a constant factor. By repeating
the above process, we can find x∗L in at most O(logn) iterations.

The running time is analyzed as follows. As discussed above, constructing the N0 sorted
sequences takes O(n logn) time. The pruning process requires at most O(logn) iterations.
At each iteration, we compute the weighted median x in O(N0) = O(n) time by [18], and
Wedge(x) in O(n logn) time by Lemma 10. Finally, pruning every sequences takes O(n)
time. Thus, the total running time is O(n logn) +O(logn)×O(n logn) = O(n log2 n) time.

I Lemma 13. With an O(n2 logn)-time preprocessing, given an arbitrary line L, a local
optimal point x∗L on L can be computed in O(n log2 n) time.

4 (1|1)R-Centroid on the Plane

In this section, we study the (1|1)R-centroid problem and propose an improved algorithm of
time complexity O(n2 logn). This algorithm is as efficient as the best-so-far algorithm for
the (1|1)-centroid problem in [12], but based on a completely different approach.

In Subsection 4.1, we extend the algorithm of Lemma 13 to develop a procedure allowing
us to prune candidate points on the plane with respect to a given vertical line. Then, in
Subsection 4.2, we show how to compute a (1|1)R-centroid in O(n2 logn) time based on this
newly-developed pruning procedure.

4.1 Pruning with Respect to a Vertical Line
Let L be an arbitrary vertical line on the plane. We call the half-plane strictly to the left of
L the left plane of L and the one strictly to its right the right plane of L. A sideward wedge
of some point on L is said to be rightward (resp. leftward) if it intersects the right (resp.
left) plane of L. We can observe that, if there is some point x ∈ L such that Wedge(x) is
rightward, every point x′ on the left plane of L can be pruned, since W ∗(x′) ≥ W ∗(x) by
Lemma 9. Similarly, if Wedge(x) is leftward, points on the right plane of L can be pruned.
Although the power of wedges is not fully exerted in this way, pruning via vertical lines and
sideward wedges is superior than directly via wedges due to predictable pruning regions.

Therefore, in this subsection we describe how to design a procedure that enables us to
prune either the left or the right plane of a given vertical line L. As mentioned above, the
key point is the searching of sideward wedges on L. It is achieved by carrying out three

ISAAC 2016

64:8 The (1|1)-Centroid Problem on the Plane Concerning Distance Constraints

conditional phases. In the first phase, we try to find some proper breakpoints with sideward
wedges. If failed, we pick some representative point in the second phase and check its wedge
to determine whether or not sideward wedges exist. Finally, in case of their nonexistence,
we show that their functional alternative can be computed, called the pseudo wedge, that
still allows us to prune the left or right plane of L. In the following, we develop a series of
lemmas to demonstrate the details of the three phases.

I Lemma 14. Let x be an arbitrary point on L. If Wedge(x) is either upward or downward,
for any point x′ ∈ L\Wedge(x), Wedge(x′) has the same direction as Wedge(x).

Following from this lemma, if there exist two arbitrary points x1 and x2 on L with
their wedges downward and upward, respectively, we can derive that x1 must be strictly
above x2, and that points with sideward wedges or even strong (1|1)R-centroids can lie only
between x1 and x2. Thus, we can find sideward wedges between some specified downward
and upward wedges. Let xD be the lowermost breakpoint on L with its wedge downward,
xU the uppermost breakpoint on L with its wedge upward, and GDU the open segment
xDxU\{xD, xU}. (For ease of discussion, we assume that both xD and xU exist on L, and
show how to resolve this assumption later by constructing a bounding box.) Again, xD is
strictly above xU . Also, we have the following corollary by their definitions.

I Corollary 15. If there exist breakpoints in the segment GDU , for any such breakpoint x,
either x is a strong (1|1)R-centroid or Wedge(x) is sideward.

Given xD and xU , the first phase can thus be done by checking whether there exist
breakpoints in GDU and picking any of them if exist. Supposing that the picked one is
not a strong (1|1)R-centroid, a sideward wedge is found by Corollary 15 and can be used
for pruning. Notice that, when there are two or more such breakpoints, one may question
whether their wedges are of the same direction, as different directions result in inconsistent
pruning results. The following lemma answers the question in the positive.

I Lemma 16. Let x1, x2 be two distinct points on L, where x1 is strictly above x2 and none
of them is a strong (1|1)R-centroid. If Wedge(x1) and Wedge(x2) are both sideward, they
are either both rightward or both leftward.

The second phase deals with the case that no breakpoint exists between xD and xU by
determining the wedge direction of a representative point of all inner points in GDU . The
following lemma enables us to pick an arbitrary point in GDU as the representative.

I Lemma 17. When there is no breakpoint between xD and xU , any two distinct points
x1, x2 in GDU have the same wedge direction, if they are not strong (1|1)R-centroids.

We choose the bisector point xB of xD and xU as the representative. If xB is not a strong
(1|1)R-centroid and Wedge(xB) is sideward, the second phase finishes with a sideward wedge
found. Otherwise, if Wedge(xB) is downward or upward, we can derive the following and
have to invoke the third phase.

I Lemma 18. If there is no breakpoint between xD and xU and Wedge(xB) is not sideward,
there exist neither strong (1|1)R-centroids nor points with sideward wedges on L.

When L satisfies Lemma 18, it consists of only points with downward or upward wedges,
and is said to be non-leaning. Obviously, our pruning strategy via sideward wedges could
not apply to such non-leaning lines. The third phase overcomes this obstacle by constructing
a functional alternative of sideward wedges, called the pseudo wedge, on either xD or xU , so
that pruning with respect to L is still achievable. We start with auxiliary lemmas.

H-. I Yu, T-. C. Lin, and D. T. Lee 64:9

I Lemma 19. If L is non-leaning, W ∗(xD) 6= W ∗(xU).

Let W1 = max{W ∗(xD),W ∗(xU)}. We are going to define the pseudo wedge on either
xU or xD, depending on which one has the smaller weight loss. We consider first the case
that W ∗(xD) > W ∗(xU), and obtain the following.

I Lemma 20. If L is non-leaning and W ∗(xD) > W ∗(xU), there exists one angle θ for xU ,
where π ≤ θ ≤ 2π, such that W (H(B(θ|xU), y(θ|xU))) ≥W1.

Let θU be an arbitrary angle satisfying the conditions of Lemma 20. We apply the
line F (θU |xU) for trimming the region of Wedge(xU), so that a sideward wedge can be
obtained. Let PW (xU), called the pseudo wedge of xU , denote the intersection of Wedge(xU)
and H(F (θU |xU), y(θU |xU)). Deriving from the three facts that Wedge(xU) is upward,
δ(Wedge(xU)) < π, and π ≤ θU ≤ 2π, we can observe that either PW (xU) is xU itself, or it
intersects only one of the right and left planes of L. In the two circumstances, PW (xU) is
said to be closed or sideward, respectively. The pseudo wedge has similar functionality as
wedges, as shown in the following corollary.

I Corollary 21. For any point x′ /∈ PW (xU), W ∗(x′) ≥W ∗(xU).

By this lemma, if PW (xU) is found to be sideward, points on the opposite half-plane
with respect to L can be pruned. If PW (xU) is closed, xU becomes another kind of strong
(1|1)R-centroids, in the meaning that it is also an immediate solution to the (1|1)R-centroid
problem. Without confusion, we call xU a conditional (1|1)R-centroid in the latter case.

On the other hand, considering the opposite case that W ∗(xD) < W ∗(xU), we can also
obtain an angle θD and a pseudo wedge PW (xD) for xD by symmetric arguments. Then,
either PW (xD) is sideward and the opposite side of L can be pruned, or xD itself is a
conditional (1|1)R-centroid. Thus, the third phase overcomes the obstacle of the nonexistence
of sideward wedges.

Recall that the three phases of searching sideward wedges is based on the existence of
xD and xU on L, which was not guaranteed before. Here we show that, by constructing
appropriate border lines, we can guarantee the existence of xD and xU while searching between
these border lines. The bounding box is defined as the smallest axis-aligned rectangle that
encloses all circles in C(V). Clearly, any point x outside the box satisfies that W ∗(x) = W (V)
and must not be a (1|1)R-centroid. Thus, given a vertical line not intersecting the box, the
half-plane to be pruned is trivially decided. Moreover, let Ttop and Tbtm be two arbitrary
horizontal lines strictly above and below the box, respectively. We can obtain the following.

I Lemma 22. Let L be an arbitrary vertical line intersecting the bounding box, and x′D and
x′U denote its intersection points with Ttop and Tbtm, respectively. Wedge(x′D) is downward
and Wedge(x′U) is upward.

According to this lemma, by inserting Ttop and Tbtm into T , the existence of xD and xU
is enforced for any vertical line intersecting the bounding box. Besides, the insertion does
not affect the correctness of all lemmas developed so far.

Summarizing the above discussion, the whole picture of our desired pruning procedure
can be described as follows. In the beginning, we perform a preprocessing to obtain the
bounding box and then add Ttop and Tbtm into T . Now, given a vertical line L, whether to
prune its left or right plane can be determined by the following steps.
1. If L does not intersect the bounding box, prune the half-plane not containing the box.
2. Compute xD and xU on L.

ISAAC 2016

64:10 The (1|1)-Centroid Problem on the Plane Concerning Distance Constraints

3. Find a sideward wedge or pseudo wedge via three forementioned phases. (Terminate
whenever a strong or conditional (1|1)R-centroid is found.)
a. If breakpoints exist between xD and xU , pick any of them and check it.
b. If no such breakpoint, decide whether L is non-leaning by checking xB .
c. If L is non-leaning, compute PW (xU) or PW (xD) depending on which of xU and xD

has smaller weight loss.
4. Prune the right or left plane of L according to the direction of the sideward wedge or

pseudo wedge.

The correctness of this procedure follows from the developed lemmas. Any vertical line
not intersecting the bounding box is trivially dealt with in Step 1, due to the property of
the box. When L intersects the box, by Lemma 22, xD and xU can certainly be found in
Step 2. The three sub-steps of Step 3 correspond to the three searching phases. When L is
not non-leaning, a sideward wedge is found, either at some breakpoint between xD and xU
in Step 3(a) by Corollary 15, or at xB in Step 3(b) by Lemma 17. Otherwise, according to
Lemma 20 or its symmetric version, a pseudo wedge can be built in Step 3(c) for xU or xD,
respectively. In Step 4, whether to prune the left or right plane of L can be determined via
the just-found sideward wedge or pseudo wedge, by respectively Lemma 9 or Corollary 21.

The time complexity of this procedure is analyzed as follows. Computing the bounding
box takes O(n) time. In Step 2, xD and xU can be found by using the binary-search discussed
in 3.2. Although the algorithm is not designed for this purpose, a slightly modification to its
objective satisfies our need, and Step 2 can be done in O(n log2 n) time by Lemma 13.

In Step 3(a), all breakpoints between xD and xU can be obtained in O(n logn) time as
follows. As done in Lemma 13, we list all breakpoints on L as O(n) sorted sequences, and
prune breakpoints not in GDU from each sequence by binary search. In Step 3(a) or 3(b),
checking a picked point is done in O(n logn) time by invoking Lemma 10. The pseudo wedge
PW (xU) or PW (xD) in Step 3(c) can be computed in O(n logn) time by using a sweeping
technique to find the angle θU satisfying Lemma 20, or symmetrically θD, in O(n logn) time.
Summarizing the above, these steps require O(n log2 n) time in total. Since the invocation of
Lemma 13 needs an additional O(n2 logn)-time preprocessing, we have the following result.

I Lemma 23. With an O(n2 logn)-time preprocessing, whether to prune the right or left
plane of a given vertical line L can be determined in O(n log2 n) time.

4.2 Searching on the Euclidean Plane
In this subsection, we come back to the (1|1)R-centroid problem. Recall that, by Lemma 4,
at least one (1|1)R-centroid can be found in the three sets of intersection points T × T ,
C(V)× T , and C(V)× C(V), which consist of total O(n4) points. Let L denote the set of
all vertical lines passing through these O(n4) intersection points. By definition, there exists
a vertical line L∗ ∈ L such that its local optimal point is a (1|1)R-centroid. Conceptually,
with the help of Lemma 23, L∗ can be derived by applying prune-and-search approach to
L. However, it costs too much to explicitly generate and maintain the O(n4) lines. In the
following, we show how to implicitly maintain these lines, by dealing with each of the above
three sets separately, so that prune-and-search approaches can be applied.

Let LT , LM, and LC be the sets of all vertical lines passing through the intersection
points in T × T , C(V) × T , and C(V) × C(V), respectively. A local optimal line of LT is
a vertical line L∗t ∈ LT , such that its local optimal point has weight loss no larger than
those of other lines in LT . The local optimal lines L∗m and L∗c can be similarly defined for
LM and LC , respectively. We will adopt different prune-and-search techniques to find the

H-. I Yu, T-. C. Lin, and D. T. Lee 64:11

local optimal lines of the three sets, so that a (1|1)R-centroid can be found on one of them.
Since some of the algorithms are fairly complicated, due to page limit, we provide only the
overview of our approaches in the following.

To deal with up to O(n4) vertical lines in LT , we apply the ingenious idea of parametric
search via parallel sorting algorithms, proposed by Megiddo [15]. In this approach, the
process of pruning vertical lines in LT to find L∗t is reduced to the problem of sorting the
O(n2) lines of T according to their intersection points on the undetermined vertical line L∗t ,
in which each comparison between two lines of T can be resolved by deciding whether L∗t
is to the right or left of their intersection point. Obviously, the decision can be done by
invoking Lemma 23 on the vertical line passing through the point.

Given a batch of k such comparisons, Megiddo showed how to resolve them in O(k+τ log k)
time, where τ is the time required to resolve one comparison. Then, he found that executing
parallel sorting algorithms in a sequential way serves as good batching schemes. For example,
the parallel merge sort algorithm [3] sorts N1 items in O(logN1) parallel steps on O(N1)
processors. Executing this algorithm sequentially forms a sorting framework that takes
O(logN1) iterations, in each of which a batch of k = O(N1) comparisons has to be resolved.
Thus, by letting N1 = |T | and τ = O(n log2 n), our sorting problem can be solved in
O((k + τ log k)× logN1) = O(n2 logn) time.

I Lemma 24. A local optimal line L∗t of LT can be found in O(n2 logn) time.

By similar observation as made in Lemma 12, for any two points u, v ∈ V , Cγ(u)×T r(v)
and Cγ(u)× T l(v) can be represented by O(1) consecutive subsequences of P (v) in O(logn)
time. Thus, for C(V) × T we can construct in O(n2 logn) time O(n2) sequences of O(n)
breakpoints, each sorted in increasing x-coordinates. Correspondingly, LM can be represented
by O(n2) sorted sequences of vertical lines. Then, finding L∗m can be done by applying
prune-and-search to the O(n2) sequences of vertical lines via parallel binary searches, like in
Lemma 13, which takes O(logn) iterations and O(n2 + n log2 n) time per iteration.

I Lemma 25. A local optimal line L∗m of LM can be found in O(n2 logn) time.

Since |C(V) × C(V)| = O(n2), a sorted sequence of LC can be obtained in O(n2 logn)
time. Then, L∗c can be easily found by binary search with Lemma 23 in O(n log3 n) time.

I Lemma 26. A local optimal line L∗c of LC can be found in O(n2 logn) time.

By definition, L∗ can be found among L∗t , L∗m, and L∗c , which can be computed in
O(n2 logn) time by Lemmas 24, 25, and 26, respectively. Then, a (1|1)R-centroid can be
computed as the local optimal point of L∗ in O(n log2 n) time by Lemma 13. Combining
with the O(n2 logn)-time preprocessing for computing the angular sorted sequence P (v)s
and the bounding box enclosing C(V), we have the following theorem.

I Theorem 27. The (1|1)R-centroid problem can be solved in O(n2 logn) time.

5 Concluding Remarks

In this paper, we revisited the (1|1)-centroid problem on the Euclidean plane under the
consideration of minimal distance constraint between facilities, and proposed an O(n2 logn)-
time algorithm, which closes the bound gap between this problem and its unconstrained
version. Starting from a critical observation on the medianoid solutions, we developed a
pruning tool with indefinite region remained after pruning, and made use of it via multi-level
structured parametric search approach, which is different to the previous approach in [6, 12].

ISAAC 2016

64:12 The (1|1)-Centroid Problem on the Plane Concerning Distance Constraints

Considering distance constraint between facilities in various competitive facility location
models is both of theoretical interest and of practical importance. However, similar constraints
are rarely seen in the literature. It would be good starting points by introducing the constraint
to the facilities between players in the (r|Xp)-medianoid and (r|p)-centroid problems, maybe
even to the facilities between the same player.

References
1 Aritra Banik, Jean-Lou De Carufel, Anil Maheshwari, and Michiel Smid. Discrete voronoi

games and ε-nets, in two and three dimensions. Computational Geometry, 55:41–58, 2016.
2 Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. Journal

of the ACM, 34(1):200–208, January 1987.
3 Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988.
4 Abdullah Dasci. Conditional location problems on networks and in the plane. In Horst A.

Eiselt and Vladimir Marianov, editors, Foundations of Location Analysis, pages 179–206.
Springer US, Boston, MA, 2011.

5 Ivan Davydov, Yury Kochetov, and Alexandr Plyasunov. On the complexity of the (r|p)-
centroid problem in the plane. TOP, 22(2):614–623, 2014.

6 Zvi Drezner. Competitive location strategies for two facilities. Regional Science and Urban
Economics, 12(4):485–493, 1982.

7 Zvi Drezner and E. Zemel. Competitive location in the plane. Annals of Operations
Research, 40(1):173–193, 1992.

8 Horst A. Eiselt and Gilbert Laporte. Sequential location problems. European Journal of
Operational Research, 96(2):217–231, 1997.

9 Horst A. Eiselt, Gilbert Laporte, and Jacques-Francois Thisse. Competitive location mod-
els: a framework and bibliography. Transportation Science, 27(1):44–54, 1993.

10 Horst A. Eiselt, Vladimir Marianov, and Tammy Drezner. Competitive location models. In
Gilbert Laporte, Stefan Nickel, and Francisco Saldanha da Gama, editors, Location Science,
pages 365–398. Springer International Publishing, Cham, 2015.

11 S. Louis Hakimi. On locating new facilities in a competitive environment. European Journal
of Operational Research, 12(1):29–35, 1983.

12 S. Louis Hakimi. Locations with spatial interactions: competitive locations and games.
In Pitu B. Mirchandani and Richard L. Francis, editors, Discrete location theory, pages
439–478. Wiley, 1990.

13 Harold Hotelling. Stability in competition. The Economic Journal, 39(153):41–57, 1929.
14 D.T. Lee and Y.F. Wu. Geometric complexity of some location problems. Algorithmica,

1(1):193–211, 1986.
15 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algo-

rithms. Journal of the ACM, 30(4):852–865, October 1983.
16 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related prob-

lems. SIAM Journal on Computing, 12(4):759–776, 1983.
17 Frank Plastria. Static competitive facility location: An overview of optimisation approaches.

European Journal of Operational Research, 129(3):461–470, 2001.
18 Angelika Reiser. A linear selection algorithm for sets of elements with weights. Information

Processing Letters, 7(3):159–162, 1978.
19 D.R. Santos-Peñate, R. Suárez-Vega, and P. Dorta-González. The leader–follower location

model. Networks and Spatial Economics, 7(1):45–61, 2007.

	Introduction
	Notations and Preliminary Results
	Previous approaches

	Local (1|1)-R-Centroid within a Line
	Pruning with Respect to a Point
	Searching on a Line

	(1|1)-R-Centroid on the Plane
	Pruning with Respect to a Vertical Line
	Searching on the Euclidean Plane

	Concluding Remarks

