60 research outputs found
WRAP53 Is Essential for Cajal Body Formation and for Targeting the Survival of Motor Neuron Complex to Cajal Bodies
The WRAP53 protein regulates the formation and maintenance of Cajal bodies (nuclear sub-organelles), as well as directs the recruitment of nuclear factors to Cajal bodies
Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3.
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.This study was funded by NIH grant NS073976 to TKH and a John Sealy Grant to PSS
SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting
The authors would like to thank Mr. Marc Banworth, Mr. Justin Burnett, and Ms. Jamie Watson for their technical assistance, Drs. Muayyad Al-Ubaidi and David Sherry for their comments on the manuscript, and Drs. Roger Janz, Roderick McInnes, Neeraj Agarwal, Vadim Arshavsky, Robert Molday and Anand Swaroop for the provision of reagents as indicated in the text.Mutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in their biosynthetic pathway or in their function in the photoreceptor outer segment (OS). Here we utilize several methods including mass spectrometry after affinity purification, in vitro co-expression followed by pull-down, in vivo pull-down from mouse retinas, and proximity ligation assay to identify and confirm the SNARE proteins Syntaxin 3B and SNAP-25 as novel binding partners of RDS and ROM-1. We show that both covalently linked and non-covalently linked RDS complexes interact with Syntaxin 3B. RDS in the mouse is trafficked from the inner segment to the outer segment by both conventional (i.e., Golgi dependent) and unconventional secretory pathways, and RDS from both pathways interacts with Syntaxin3B. Syntaxin 3B and SNAP-25 are enriched in the inner segment (compared to the outer segment) suggesting that the interaction with RDS/ROM-1 occurs in the inner segment. Syntaxin 3B and SNAP-25 are involved in mediating fusion of vesicles carrying other outer segment proteins during outer segment targeting, so could be involved in the trafficking of RDS/ROM-1.Yeshttp://www.plosone.org/static/editorial#pee
The "in situ" proximity ligation assay to probe protein-protein interactions in intact tissues
he proximity ligation assay (PLA) is a sensitive and specific technique to visualize proteins, their posttranslational modifications and activation state as well as protein-protein interactions. The assay is based on the employment of proximity probes, composed by oligonucleotide-conjugated antibodies, to recognize a couple of specific targets. The binding of probes in close proximity allows for their hybridization by connector oligonucleotides, that can form a circular DNA strand. These DNA circles can then be amplified by polymerase chain reaction. Finally, the conjugation of fluorescence-labelled oligonucleotides with the amplification product allows for the localized detection of individual or interacting proteins in cells and tissues. Here, we describe the use of "in situ" PLA to visualize the localization of protein-protein interactions in intact tissues
The “In Situ” Proximity Ligation Assay to Probe Protein–Protein Interactions in Intact Tissues
- …