39 research outputs found
Naomi: a new modelling tool for estimating HIV epidemic indicators at the district level in sub-Saharan Africa.
INTRODUCTION: HIV planning requires granular estimates for the number of people living with HIV (PLHIV), antiretroviral treatment (ART) coverage and unmet need, and new HIV infections by district, or equivalent subnational administrative level. We developed a Bayesian small-area estimation model, called Naomi, to estimate these quantities stratified by subnational administrative units, sex, and five-year age groups. METHODS: Small-area regressions for HIV prevalence, ART coverage and HIV incidence were jointly calibrated using subnational household survey data on all three indicators, routine antenatal service delivery data on HIV prevalence and ART coverage among pregnant women, and service delivery data on the number of PLHIV receiving ART. Incidence was modelled by district-level HIV prevalence and ART coverage. Model outputs of counts and rates for each indicator were aggregated to multiple geographic and demographic stratifications of interest. The model was estimated in an empirical Bayes framework, furnishing probabilistic uncertainty ranges for all output indicators. Example results were presented using data from Malawi during 2016-2018. RESULTS: Adult HIV prevalence in September 2018 ranged from 3.2% to 17.1% across Malawi's districts and was higher in southern districts and in metropolitan areas. ART coverage was more homogenous, ranging from 75% to 82%. The largest number of PLHIV was among ages 35 to 39 for both women and men, while the most untreated PLHIV were among ages 25 to 29 for women and 30 to 34 for men. Relative uncertainty was larger for the untreated PLHIV than the number on ART or total PLHIV. Among clients receiving ART at facilities in Lilongwe city, an estimated 71% (95% CI, 61% to 79%) resided in Lilongwe city, 20% (14% to 27%) in Lilongwe district outside the metropolis, and 9% (6% to 12%) in neighbouring Dowa district. Thirty-eight percent (26% to 50%) of Lilongwe rural residents and 39% (27% to 50%) of Dowa residents received treatment at facilities in Lilongwe city. CONCLUSIONS: The Naomi model synthesizes multiple subnational data sources to furnish estimates of key indicators for HIV programme planning, resource allocation, and target setting. Further model development to meet evolving HIV policy priorities and programme need should be accompanied by continued strengthening and understanding of routine health system data
Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b
Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme
Latent LytM at 1.3A resolution
LytM, an autolysin from Staphylococcus aureus, is a Zn2 dependent glycyl glycine endopeptidase with a characteristic HxH motif that belongs to the lysostaphin type MEROPS M23 37 of metallopeptidases. Here, we present the 1.3 crystal structure of LytM, the first structure of a lysostaphin type peptidase. In the LytM structure, the Zn2 is tetrahedrally coordinated by the side chains of N117, H210, D214 and H293, the second histidine of the HxH motif. Although close to the active site, H291, the first histidine of the HxH motif, is not directly involved in Zn2 coordination, and there is no water molecule in the coordination sphere of the Zn2 , suggesting that the crystal structure shows a latent form of the enzyme. Although LytM has not previously been considered as a proenzyme, we show that a truncated version of LytM that lacks the N terminal part with the poorly conserved Zn2 ligand N117 has much higher specific activity than full length enzyme. This observation is consistent with the known removal of profragments in other lysostaphin type proteins and with a prior observation of an active LytM degradation fragment in S. aureus supernatant. The asparagine switch in LytM is analogous to the cysteine switch in pro matrix metalloprotease
oxSWATH: An integrative method for a comprehensive redox-centered analysis combined with a generic differential proteomics screening
Most of the redox proteomics strategies are focused on the identification and relative quantification of cysteine oxidation without considering the variation in the total levels of the proteins. However, protein synthesis and protein degradation also belong to the regulatory mechanisms of the cells, being therefore important to consider the changes in total protein levels in PTMs-focused analyses, such as cysteine redox characterization. Therefore, a novel integrative approach combining the SWATH-MS method with differential alkylation using a combination of commonly available alkylating reagents (oxSWATH) is presented, by which it is possible to integrate the information regarding relative cysteine oxidation with the analysis of the total protein levels in a cost-effective high-throughput approach.The proposed method was tested using a redox-regulated protein and further applied to a comparative analysis of secretomes obtained from cells cultured under control or oxidative stress conditions to strengthen the importance of considering the overall proteome changes. Using the OxSWATH method it was possible to determine both the relative proportion of reduced and reversible oxidized oxoforms, as well as the total levels of each oxoform by taking into consideration the total levels of the protein. Therefore, using OxSWATH the comparative analyses can be performed at two different levels by considering the relative proportion or the total levels at both peptide and protein level. Moreover, since samples are acquired in SWATH-MS mode, besides the redox centered analysis, a generic differential protein expression analysis can also be performed, allowing a truly comprehensive evaluation of proteomics changes upon the oxidative stimulus.Data are available via ProteomeXchange and SWATHAtlas with the identifiers PXD006802, PXD006802, and PASS01210
Crystallization of the photosystem II core complex and its chlorophyll binding subunit CP43 from transplastomic plants of Nicotiana tabacum.
Photosystem II from transplastomic plants of Nicotiana tabacum with a hexahistidine tag at the N-terminal end of the PsbE subunit (α-chain of the cytochrome b(559)) was purified according to the protocol of Fey et al. (BBA 12:1501-1509, 2008). The protein sample was then subjected to two additional gel filtration runs in order to increase its homogeneity and to standardize the amount of detergent. Large three dimensional crystals of the core complex were obtained. Crystals of one of its chlorophyll binding subunits (CP43) in isolation grew in very similar conditions that differed only in the concentration of the detergent. Diffraction of Photosystem II and CP43 crystals at various synchrotron beamlines was limited to a resolution of 7 and 14Â Ă
, respectively. In both cases the diffraction quality was insufficient for an unambiguous assignment of the crystallographic lattice or space group