129 research outputs found

    Self-perceived normality in defecation habits

    Get PDF
    Background: Available information on normal bowel habits was mainly gathered by means of telephone interviews or mailed questionnaires. Aims: We undertook a prospective study to evaluate the defecatory habits in subjects perceiving themselves as normal concerning this function. Subjects and Methods: A questionnaire (4-week diary with "yes-no" daily answers to six questions concerning bowel habits) was distributed to 204 subjects perceiving their defecation behaviour as normal. Results: The completed questionnaire was returned by 140 subjects. No significant differences were found between sexes or age groups for any variable, even though straining at stool and feeling of incomplete and/or difficult evacuation showed a trend to increase with age. No subject had less than three bowel movements per week or more than three per day. The percentage of symptoms linked to an abnormal defecatory behaviour was well below 10%. Fifty-five percent of subjects reported at least one parameter of abnormal functioning; the most frequent was straining at stool and the rarer was the manual manoeuvres to help defecation. Conclusions: In normal subjects the prevalence of symptoms considered in Rome II criteria as part of an abnormal defecatory behaviour (in more than 25% of defecations) is well below 10%, manual manoeuvres are almost never used to help defecation, and the frequency of defecations is at least three per week. © 2005 Editrice Gastroenterologica Italiana S.r.l

    Lethal effect of high concentrations of Parecoxib and Flunixin meglumine on the in vitro culture of bovine embryos

    Get PDF
    Abstract Since cyclooxygenase (COX) inhibitors have been pointed out as potential treatments to increase pregnancy rates after embryo transfer, the present experiment aimed to evaluate the effects of flunixin meglumine (FM) and parecoxib (P), a COX-1 and 2 or COX-2 specific inhibitor, respectively, on the development of bovine embryos until the hatched blastocyst stage. In vitro produced bovine embryos were cultured in media with different concentrations of FM (0.14; 1.4; 14; 140 or 1400 µg/ml) or P (0.09; 0.9; 9; 90 or 900 µg/ml) and the production rates were evaluated. Concentrations of FM ≤14 µg/ml and P ≤90 µg/ml did not impair embryo development, although compiled data from non-lethal FM concentrations (≤14 µg/ml) indicated a toxic effect enough to decrease the hatching rate of blastocysts. Concentrations of FM at 140 and 1400 µg/ml and P at 900 µg/ml were lethal as no cleavage was detected on presumptive zygotes

    Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate

    Get PDF
    Background/Objectives: Short-chain fatty acids, produced by microbiome fermentation of carbohydrates, have been linked to a reduction in appetite, body weight and adiposity. However, determining the contribution of central and peripheral mechanisms to these effects has not been possible. Subjects/Methods:C57BL/6 mice fed with either normal or high-fat diet were treated with nanoparticle-delivered acetate, and the effects on metabolism were investigated. Results:In the liver, acetate decreased lipid accumulation and improved hepatic function, as well as increasing mitochondrial efficiency. In white adipose tissue, it inhibited lipolysis and induced 'browning', increasing thermogenic capacity that led to a reduction in body adiposity. Conclusions:This study provides novel insights into the peripheral mechanism of action of acetate, independent of central action, including ‘browning’ and enhancement of hepatic mitochondrial function

    High-throughput 18K SNP array to assess genetic variability of the main grapevine cultivars from Sicily

    Get PDF
    The viticulture of Sicily, for its vocation, is one of the most important and ancient forms in Italy. Autochthonous grapevine cultivars, many of which known throughout the world, have always been cultivated in the island from many centuries. With the aim to preserve this large grapevine diversity, previous studies have already started to assess the genetic variability among the Sicilian cultivars by using morphological and microsatellite markers. In this study, simple sequence repeat (SSR) were utilized to verify the true-to-typeness of a large clone collection (101) belonging to 21 biotypes of the most 10 cultivated Sicilian cultivars. Afterwards, 42 Organization Internationale de la Vigne et du Vin (OIV) descriptors and a high-throughput single nucleotide polymorphism (SNP) genotyping array (Vitis18kSNP) were applied to assess genetic variability among cultivars and biotypes of the same cultivar. Ampelographic traits and high-throughput SNP genotyping platforms provided an accuracy estimation of genetic diversity in the Sicilian germplasm, showing the relationships among cultivars by cluster and multivariate analyses. The large SNP panel defined sub-clusters unable to discern among biotypes, previously classified by ampelographic analysis, belonging to each cultivar. These results suggested that a very large number of SNP did not cover the genome regions harboring few morphological traits. Genetic structure of the collection revealed a clear optimum number of groups for K = 3, clustering in the same group a significant portion of family-related genotypes. Parentage analysis highlighted significant relationships among Sicilian grape cultivars and Sangiovese, as already reported, but also the first evidences of the relationships between Nero d’Avola and both Inzolia and Catarratto. Finally, a small panel of highly informative markers (12 SNPs) allowed us to isolate a private profile for each Sicilian cultivar, providing a new tool for cultivar identification

    Use of SSR and retrotransposon-based markers to interpret the population structure of native grapevines from Southern Italy

    Get PDF
    Native grapevines are the quintessential ele- ments of Southern Italy winemaking, and genomic char- acterization plays a role of primary importance for preservation and sustainable use of these unexploited genetic resources. Among the various molecular techniques available, SSR and retrotransposons-based markers result to be the most valuable for cultivars and biotypes distinc- tiveness. A total of 62 accessions including 38 local grape cultivars were analyzed with 30 SSR, four REMAP and one IRAP markers to assess their genetic diversity and obtain a complete genomic profiling. The use of VrZAG79, VrZAG112, VVS2, VVMD25 and VVMD5 combined with retrotransposon-based markers proved to be the most dis- criminating and polymorphic markers for the rapid and unambiguous identification of minority grapevines from Campania region, which is considered one of the most appreciated Italian districts for wine production. Results revealed 58 SSR marker-specific alleles, 22 genotype- specific SSR alleles, and four REMAP and IRAP private bands. Cases of synonymy and homonymy were discov- ered. In conclusion, we provided evidences that the inte- grating SSR and retrotransposon-based markers is an effective strategy to assess the genetic diversity of autochthonous grapes, allowing their easy identification

    Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis

    Get PDF
    Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of β-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3

    Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes

    Get PDF
    [EN] Brinjal (Solanum melongena), scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants are three Old World domesticates. The genomic DNA of a collection of accessions belonging to the three cultivated species, along with a representation of various wild relatives, was characterized for the presence of single nucleotide polymorphisms (SNPs) using a genotype-by-sequencing approach. A total of 210 million useful reads were produced and were successfully aligned to the reference eggplant genome sequence. Out of the 75,399 polymorphic sites identified among the 76 entries in study, 12,859 were associated with coding sequence. A genetic relationships analysis, supported by the output of the FastSTRUCTURE software, identified four major sub-groups as present in the germplasm panel. The first of these clustered S. aethiopicum with its wild ancestor S. anguivi; the second, S. melongena, its wild progenitor S. insanum, and its relatives S. incanum, S. lichtensteinii and S. linneanum; the third, S. macrocarpon and its wild ancestor S. dasyphyllum; and the fourth, the New World species S. sisymbriifolium, S. torvum and S. elaeagnifolium. By applying a hierarchical FastSTRUCTURE analysis on partitioned data, it was also possible to resolve the ambiguous membership of the accessions of S. campylacanthum, S. violaceum, S. lidii, S. vespertilio and S. tomentsum, as well as to genetically differentiate the three species of New World Origin. A principal coordinates analysis performed both on the entire germplasm panel and also separately on the entries belonging to sub-groups revealed a clear separation among species, although not between each of the domesticates and their respective wild ancestors. There was no clear differentiation between either distinct cultivar groups or different geographical provenance. Adopting various approaches to analyze SNP variation provided support for interpretation of results. The genotyping-by-sequencing approach showed to be highly efficient for both quantifying genetic diversity and establishing genetic relationships among and within cultivated eggplants and their wild relatives. The relevance of these results to the evolution of eggplants, as well as to their genetic improvement, is discussed.This work has been funded in part by European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and by Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER). Funding has also been received from the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. This last project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website:http://www.cwrdiversity.org/. Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract. Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Santiago Grisolia Programme (FCJI-2015-24835). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Acquadro, A.; Barchi, L.; Gramazio, P.; Portis, E.; Vilanova Navarro, S.; Comino, C.; Plazas Ávila, MDLO.... (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE. 12(7). https://doi.org/10.1371/journal.pone.0180774Se018077412

    Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array

    Get PDF
    Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits. (Résumé d'auteur
    corecore