140 research outputs found

    Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: Expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells

    Full text link
    The chemokine stromal cell-derived factor 1 (SDF-1) stimulates the growth of pre-B cells in vitro, and mice with a disrupted SDF-1 gene have abnormal fetal liver B cell lymphopoiesis. The origin of SDF-1 production has not been determined yet. Using an anti-SDF-1 mAb, we performed immunohistochemical studies in four human embryos and five fetuses to define which cells express the SDF-1 protein at sites of antenatal B cell lymphopoiesis. All mesothelial cells contained SDF-1 at all stages of development, including in the intraembryonic splanchnopleuric mesoderm early into gestation. In fetal lungs and kidneys, SDF-1 was expressed by epithelial cells, and a few B lymphoid precursors, expressing V pre-B chains, were also detected. In the fetal liver, in addition to mesothelial cells, biliary epithelial cells were the only cells to contain SDF-1. Pre-B cells expressing V chains were abundant and exclusively located around the edge of portal spaces, in close contact with biliary ductal plate epithelial cells. They did not colocalize with biliary collecting ducts. Biliary ductal plate epithelial cells and liver B cell lymphopoiesis display a parallel development and disappearance during fetal life. These results indicate that early B cell lymphopoiesis in the splanchnopleura may be triggered by mesothelial cells producing SDF-1. Later into gestation, biliary ductal plate epithelial cells may support B cell lymphopoiesis, thus playing a role similar to that of epithelial cells in the avian bursa of Fabricius, and of thymic epithelial cells for T cell lymphopoiesis

    Lignosulfonic Acid Exhibits Broadly Anti-HIV-1 Activity – Potential as a Microbicide Candidate for the Prevention of HIV-1 Sexual Transmission

    Get PDF
    Some secondary metabolites from plants show to have potent inhibitory activities against microbial pathogens, such as human immunodeficiency virus (HIV), herpes simplex virus (HSV), Treponema pallidum, Neisseria gonorrhoeae, etc. Here we report that lignosulfonic acid (LSA), a polymeric lignin derivative, exhibits potent and broad activity against HIV-1 isolates of diverse subtypes including two North America strains and a number of Chinese clinical isolates values ranging from 21.4 to 633 nM. Distinct from other polyanions, LSA functions as an entry inhibitor with multiple targets on viral gp120 as well as on host receptor CD4 and co-receptors CCR5/CXCR4. LSA blocks viral entry as determined by time-of-drug addiction and cell-cell fusion assays. Moreover, LSA inhibits CD4-gp120 interaction by blocking the binding of antibodies specific for CD4-binding sites (CD4bs) and for the V3 loop of gp120. Similarly, LSA interacts with CCR5 and CXCR4 via its inhibition of specific anti-CCR5 and anti-CXCR4 antibodies, respectively. Interestingly, the combination of LSA with AZT and Nevirapine exhibits synergism in viral inhibition. For the purpose of microbicide development, LSA displays low in vitro cytotoxicity to human genital tract epithelial cells, does not stimulate NF-ΞΊB activation and has no significant up-regulation of IL-1Ξ±/Ξ² and IL-8 as compared with N-9. Lastly, LSA shows no adverse effect on the epithelial integrity and the junctional protein expression. Taken together, our findings suggest that LSA can be a potential candidate for tropical microbicide

    Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies

    Get PDF
    HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo

    HIV-1 attachment: another look.

    No full text
    HIV-1 attachment to host cells is generally considered to take place via high-affinity binding between CD4 and gp120. However, the binding of virion-associated gp120 to cellular CD4 is often weak, and most cell types that are permissive for HIV-1 infection express little CD4. Thus, other interactions between the virion and the cell surface could dominate the attachment process

    Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans.

    No full text
    The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR- cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4- sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4- HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions

    Conformational transitions in CD4 due to complexation with HIV envelope glycoprotein gp120.

    No full text
    The binding of the surface envelope glycoprotein gp120 to its receptor, CD4, has been well characterized and is the primary basis for the cell tropism of HIV. In this study, the interaction between recombinant soluble CD4 and native membrane-associated CD4 with gp120 is probed by the use of mAbs. Complexation of gp120 with both forms of CD4 induces conformational epitopes that can be defined with specific mAbs. CG1, CG7, and CG8 are three novel mAbs that have a distinct preference for CD4 complexed over noncomplexed with gp120. The epitopes of these unique mAbs were mapped by cross-inhibition with previously characterized mAbs to a region encompassing the CDR2 and CDR3 loops in domain 1 of CD4. Systematic analysis of CG mAbs binding to CD4 and CD4/gp120 complex delineates a region in the D1 domain of CD4 that undergoes conformational rearrangements upon gp120 binding to its receptor
    • …
    corecore