1,227 research outputs found
On computational complexity of Siegel Julia sets
It has been previously shown by two of the authors that some polynomial Julia
sets are algorithmically impossible to draw with arbitrary magnification. On
the other hand, for a large class of examples the problem of drawing a picture
has polynomial complexity. In this paper we demonstrate the existence of
computable quadratic Julia sets whose computational complexity is arbitrarily
high.Comment: Updated version, to appear in Commun. Math. Phy
Intersection cohomology of Drinfeld's compactifications
Let be a smooth complete curve, be a reductive group and
a parabolic.
Following Drinfeld, one defines a compactification \widetilde{\on{Bun}}_P
of the moduli stack of -bundles on .
The present paper is concerned with the explicit description of the
Intersection Cohomology sheaf of \widetilde{\on{Bun}}_P. The description is
given in terms of the combinatorics of the Langlands dual Lie algebra
.Comment: An erratum adde
Modules over the small quantum group and semi-infinite flag manifold
We develop a theory of perverse sheaves on the semi-infinite flag manifold
, and show that the subcategory of Iwahori-monodromy
perverse sheaves is equivalent to the regular block of the category of
representations of the small quantum group at an even root of unity
Some results about geometric Whittaker model
Let G be an algebraic reductive group over a field of positive characteristic. Choose a parabolic subgroup P in G and denote by U its unipotent radical. Let X be a G-variety. The purpose of this paper is to give two examples of a situation in which the functor of averaging of ℓ-adic sheaves on X with respect to a generic character commutes with Verdier duality. Namely, in the first example we take X to be an arbitrary G-variety and we prove the above property for all -equivariant sheaves on X where is the unipotent radical of an opposite parabolic subgroup; in the second example we take X=G and we prove the corresponding result for sheaves which are equivariant under the adjoint action (the latter result was conjectured by B. C. Ngo who proved it for G=GL(n)). As an application of the proof of the first statement we reprove a theorem of N. Katz and G. Laumon about local acyclicity of the kernel of the Fourier–Deligne transform
Recommended from our members
Intersection cohomology of Drinfeld‚s compactifications
Let X be a smooth complete curve, G be a reductive group and a parabolic. Following Drinfeld, one defines a (relative) compactification of the moduli stack of P-bundles on X. The present paper is concerned with the explicit description of the Intersection Cohomology sheaf of . The description is given in terms of the combinatorics of the Langlands dual Lie algebra
Essential self-adjointness of magnetic Schr\"odinger operators on locally finite graphs
We give sufficient conditions for essential self-adjointness of magnetic
Schr\"odinger operators on locally finite graphs. Two of the main theorems of
the present paper generalize recent results of Torki-Hamza.Comment: 14 pages; The present version differs from the original version as
follows: the ordering of presentation has been modified in several places,
more details have been provided in several places, some notations have been
changed, two examples have been added, and several new references have been
inserted. The final version of this preprint will appear in Integral
Equations and Operator Theor
Spatial and temporal characterization of a Bessel beam produced using a conical mirror
We experimentally analyze a Bessel beam produced with a conical mirror,
paying particular attention to its superluminal and diffraction-free
properties. We spatially characterized the beam in the radial and on-axis
dimensions, and verified that the central peak does not spread over a
propagation distance of 73 cm. In addition, we measured the superluminal phase
and group velocities of the beam in free space. Both spatial and temporal
measurements show good agreement with the theoretical predictions.Comment: 5 pages, 6 figure
On algebraic integrability of the deformed elliptic Calogero--Moser problem
Algebraic integrability of the elliptic Calogero--Moser quantum problem
related to the deformed root systems \pbf{A_{2}(2)} is proved. Explicit
formulae for integrals are found
- …