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SOME RESULTS ABOUT GEOMETRIC WHITTAKER MODEL
ROMAN BEZRUKAVNIKOV, ALEXANDER BRAVERMAN AND IVAN MIRKOVIC

ABSTRACT. Let G be an algebraic reductive group over a field of positive charac-
teristic. Choose a parabolic subgroup P in G and denote by U its unipotent radical.
Let X be a G-variety. The purpose of this paper is to give two examples of a sit-
uation in which the functor of averaging of ¢-adic sheaves on X with respect to a
generic character x : U — G, commutes with Verdier duality. Namely, in the first
example we take X to be an arbitrary G-variety and we prove the above property
for all U-equivariant sheaves on X where U is the unipotent radical of an opposite
parabolic subgroup; in the second example we take X = G and we prove the cor-
responding result for sheaves which are equivariant under the adjoint action (the
latter result was conjectured by B. C. Ngo who proved it for G = GL(n)). As an
application of the proof of the first statement we reprove a theorem of N. Katz and
G. Laumon about local acyclicity of the kernel of the Fourier-Deligne transform.

1. INTRODUCTION

1.1. In this paper k£ will be an algebraically closed field of characteristic p > 0. We
choose a prime number ¢ which is different from p. By a sheaf on a k-scheme S
we mean an f-adic etale sheaf. We denote by D°(S) the bounded derived category
of such sheaves. For a complex F € D*(S) we denote by PH!(F) its i-th perverse
cohomology. Recall that for any finite subfield £’ C k& and any non-trivial character
Y : k' — Q; we can construct the Artin-Schreier sheaf Ly on Gg .

Let G denote a connected split reductive group over k. We shall assume that p
is sufficiently large (with respect to G) so that for every unipotent subgroup U C G
with Lie algebra u the exponential map u — U is well-defined and is an isomorphism.

Let m : G x G — G be the multiplication map. For every F,G € D*(G) we shall

denote by F *x G their ”!”-convolution; in other words
FxG=m(FKXQG). (1.1)
Similarly, we shall denote by F % G the ”*”-convolution of F and G, i.e.
FxG=m,(FXQ). (1.2)

1.2. Generic characters. Let P C G be a parabolic subgroup of G with a Levi
decomposition Up - L. For a Cartan subgroup 7' of G contained in P let Ap(Up)
denote the set of roots of T in up = Lie(Up). For every «, 5 € Ar(Up) we say that

All the authors were partially supported by the NSF.
1


http://arXiv.org/abs/math/0210250v1

a> fif a—p € Ar(Up). Let AR (Up) be the set of minimal elements with respect
to this ordering.

Lemma 1.3. (a) The natural map ®,eamn(up)ta — u%® = up/[up,up| is an isomor-
phism. In particular, ®,¢ Amin(Up) o SENETAtES Up as a Lie algebra.

(b) For a linear functional x on u®, the following conditions are equivalent:
(i) x is an L-cyclic vector in (u®)*,
(ii) there is a Cartan subgroup T in P such that x does not vanish on any root

: ab
space of T' in u%’.

We say that a homomorphism x : Up — G, is non-degenerate if its differential
satisfies (i-ii).

Proof. (a) is clear. For (b), recall that the T-module up is multiplicity free. So,
(ii) implies (i) since it implies that y is a T-cyclic vector in (u)*, and therefore
an L-cyclic vector. For the opposite direction we restate (ii) as: for a given Cartan
subgroup 7' some L-conjugate ¢ of y is not orthogonal to any of the T-root spaces
in u%. This follows from (i) since it is equivalent to: each root space (u¥), is not
orhogonal to some conjugate of x. O

Remark. The L-module up is multiplicity free. So in the case when it is semisim-
ple (which is clearly the case for p >> 0), the non-degeneracy is equivalent to the
following condition: the restriction of y to every irreducible L-submodule of u¥ is
non-zero.

1.4. Let X be a G-variety. Assume that U is a subgroup of G and x : U — G, is a
homomorphism. Let a : U x X — X denote the action map and let p: U x X — X be
the projection to the second multiple. Let Avy, . : D*(X) — D°(X) be the functor
sending every F € Db(X) to a.(x*Ly X F) (@1[1](%))®dlmU. Similarly we define the
functor Avy .1 by replacing a, by a;. We have the natural morphism Avy, 1 — Avy,y ..
The main result of this paper is the following:

Theorem 1.5. Let U C GG be the unipotent radical of a parabolic subgroup P C G
and let x : U — G, be non-degenerate.

(1) Let P denote a parabolic subgroup of G opposite to P and let U denote
its unipotent radical. Let F € D°(X) be U-equivariant. Then the natural
morphism

Avy 1 F — Avyy o F
is an isomorphism.

(2) Let F € D*(G) be equivariant with respect to the adjoint action. Then the
natural morphism

Avy o F — Avyy o F

is an isomorphism.



Remarks.
0. In the above cases the averaging functors preserve perversity: if F is perverse then
Avy 1 F is in perverse degrees > 0 and Avy, .F in perverse degrees < 0.
1. The second statement of Theorem [[.§ was communicated to the first author as a
conjecture by B. C. Ngo who also proved it for G = GL(n).
2. In the case G = GL(n) a (much more involved) analogue of Theorem [[J(2) is
used in [f] (Theorem 5.1) in order to complete the proof of the geometric Langlands
conjecture for GL(n). We believe that both statements of Theorem [.5 might have
something to do with a possible generalization of Theorem 5.1 of [J] to the case of
arbitrary reductive group.
3. In the next section we also explain how the main step in the proof of Theorem [L(1)
allows to reprove one of the main results of [H].
4. Theorem also holds when k is an algebraically closed field of characteristic
0 and ¢-adic sheaves are replaced by holonomic D-modules (in this case one has to
replace L, by the D-module corresponding to the function e”).

We conclude the introduction with the following conjecture.

Conjecture 1.6. Let U and x be as above. For any irreducible perverse sheaf
F € D*(G) equivariant with respect to the adjoint action, Avy;,\F is an irreducible
perverse sheaf or zero.

2. Proor orF THEOREM [[§(1)

2.1. Cleanness. Let Z be an algebraic variety over k and let j : Zy — Z be an open
embedding. We shall say that G € D(Zy) is clean with respect to j if the natural
map G — 7,G is an isomorphism.

Let X be any P-variety. Consider the variety G x X. We have the natural open

P
embedding j : U x X — G x X. We will prove Theorem [[.J(1) by a series of
P
reductions. We claim that Theorem [[.LJ(1) follows from

Theorem 2.2. Let X be a P-variety and let F € D*(X) be U-equivariant. Then the
sheaf x*Ly, X F is clean with respect to j. In other words the natural morphism

HXLy ®WF) = (X Ly W F) (2.1)
is an isomorphism.

2.3. Theorem implies Theorem [[.§(1). Indeed if X is a G-variety then we
have the natural proper map b : G x X — X sending every (g,z)modP to g(z).

P
Moreover, we have bo j = a (recall that a : U x X — X denotes the action map).
Hence Theorem P.9 and the fact that b is proper imply that

Ay F = bi(i(X Ly WF)) = 0. (5. (X "Ly B F)) = Avy, o F.
3



It remains to prove Theorem P.3. Note that in the formulation of Theorem P.3 we do
not need X to be a G-variety but only a P-variety.

2.4. A reformulation of the Theorem 2.2, Let 7 : GxX — G XX be the natural
P

projection. Also let 3 :U-Px X — G x X be the natural embedding. It follows from
the smooth base change theorem that it is enough to show that the natural map

O Ly BF) = Jurt (¢ Ly B F)
is an isomorphism (note that we have the natural identification U - P x X with
71U x X)).

The sheaf 7*(x*Ly X F) is obviously (U, x)-equivariant with respect to the U-
action by multiplication on the left. We claim that it is also U-equivariant with
respect to multiplication on the right, i.e. with respect to the U-action on U - P x X
given by @ : (u,p,x) — (u,pu,r). Indeed, the map 7 from U - P x X to U x X
is given by 7 : (u,p,7) — (u,p(x)) (since the action of P on G x X is given by
p:(g,2) — (gp ", pr)). Thus

m(u, pu, ) = (u, pu(z)) = (u, pup " (p(2)))

and our statement follows from U-equivariance of F.
Hence we see that Theorem follows from the following lemma.

Lemma 2.5. Consider the action of U x U on U - P C G given by left and right
multiplications. For any variety X, if G € D*(U - P x X) is (U, x)-equivariant on
the left and U-equivariant on the right, then the natural map given by the inclusion
3:U-?><X—>G><X,
7G — 5.9,

is an isomorphism.

Proof. Let Z denote the complement of U - P in G and let i be the natural embedding
of Z x X to G x X. Since 7,G is also (U, x)-equivariant on the left and U-equivariant

on the right it is enough to show that for every complex H on G x X with the above
equivariance properties we have *H = 0. However, it is clear that this follows from:

Lemma 2.6. Let g € Z. Let S, € U x U denote the set of all pairs (u,u) such that
ugu = g. Let also U, be the projection of S, to U. Then the restriction of x to Uy is
non-trivial.

Proof. Indeed, assume that for some g € G the restriction x|y, is trivial. Choose a
pair of opposite Borel subgroups (B, B) of G such that U ¢ B, U C B. Let T = BNB
and let w € W be such that ¢ € BwB where w is any representative of w in the
normalizer of T. We must show that w € W)y, where Wy, C W is the Weyl group of
M = PN P. We have U, = U NwUw™" (note that this intersection does not change

when we multiply w on the right by any element of M; hence it depends in fact only
4



on the class of w modulo Wy,). Let u, = Lie(U,). Since x|y, = 0 it follows that
for every o € AP (Up) we have u, ¢ u,. Hence for every a € AP*(Up) we have
u, € Lie(UNwPw™"). Since u, generate u when o runs over AR (Up) it follows that
u C Lie(wPw™") which implies that w € Wjy. O

U

Corollary 2.7. Let j denote the open embedding of P into G/U. Let F be any
(U, x)-equivariant sheaf on P (with respect to the left multiplication action). Then
the natural morphism

nF = g F
is an isomorphism. In other words, every (U, x)-equivariant sheaf on P is clean with
respect to j.

Proof. Let L be the Levi factor of P. The isomorphism L ~ P/U gives rise to a
natural action of P on L. Since the action of U on L is trivial it follows that every
F € D*(L) is automatically U-equivariant.
We have the natural identifications U x L ~ P (by multiplication map) and G' x L ~
P

G/U (sending every (g,I) mod P to gl mod U). Under these identification the

embedding j : P — G/U becomes equal to the natural embedding U x L — G x L
P

considered in Theorem (for X = L). Also the fact that F is (U, x)-equivariant
implies that as a sheaf on U x L it can be decomposed as F = x*L, X F’ for some
F' € D°(L). Hence Corollary R.7 is a particular case of Theorem P.2. O

2.8. Application to Katz-Laumon theorem. Consider the variety A! x G,, with
coordinates (z,y). Let f : Al x G,, — A! be given by f(z,y) = 2. Let also

i: A' x G,, — A? denote the natural embedding and let 7 : A’ x G,, — G,,, be the
projection to the second variable. The following theorem is proved in [H].

Theorem 2.9. For every F € D(G,,) the natural map
Wf Ly @TF) = in(f*Ly @7 F) (2.2)
is an isomorphism.

Below we explain that Theorem P.9 may be viewed as a particular case of Corol-
lary P71

Proof. Take now G = SL(2) and let P and P be respectively the subgroups of lower-
triangular and upper-triangular matrices, with unipotent radicals U and U. We
denote the natural isomorphism between U and G, by x.

Let us identify G/U with A2\{0} by gU + g(e;) for the first standard basis vector

e; of A2, Then P C G/U is identified with A' x G,, ¢ A2\{0} by <;\ )\91) PN

(t, A1), The sheaf f*L, @ 7*F is (U, x)-equivariant, so by Corollary P.7 this sheaf is
5



clean for the embedding A! x G,, € A2\{0}. It remains to observe that the resulting
sheaf on A?\{0} is clean for the embedding into A? since the cone of the canonical
map between the shriek and star direct images is zero — it is a (U, x)-equivariant sheaf
supported at a point {0}. O

3. PrRoOOF OoF THEOREM [[F(2)

3.1. Horocycle transform. Let P be a parabolic subgroup in G and let Yp denote
the variety of all parabolic subgroups of G which are conjugate to P. We also denote
by Wp the variety of P-horocycles, i.e., the pairs (Q € Yp,z € G/Ug) where Ug
denotes the unipotent radical of Q (see section Section B.d below for a more direct
definition of Wp). We have the natural map p: Wp — Yp.

We also have the natural morphisms o : G x Yp — GG and 3 : G X Yp — Wp where
a is just the projection to the first multiple and 3 sends (g,Q) to (Q,g mod Ug).
We define two functors Rp : DY(G) — D*(Wp) and Sp : DY(Wp) — DP(G) by setting

Rp(F) = Bio’ (F) ® (QU](%))@dimvp

and
- 1 ®dim Up
se(0) =@ o (Tly)
The following lemma is proved in [[] when () is a Borel subgroup in G.

Lemma 3.2. The identity functor is a direct summand of Sp o Rp.

Proof. Let Tg = {(Q € Yp,u € Ug)}. We have the natural map pp : 7o — G sending
every (@, u) to u (clearly the image of pp lies in the set of unipotent elements in G).
Let Sprp = (pp)Q,[2dim Yp](dim Yp). It is known (cf. [B]) that Sprp is perverse
and that it contains the skyscraper sheaf J. at the unit element e € G as a direct
summand. We set Sprp = d. & Spr'p.

On the other hand, arguing as in [[f] we can show that for every F € D*(G) we
have a canonical isomorphism

SpoRp(F)=F »Sprp. (3.1)

Hence
SpoRp(F) =F @& (F Sprp) (3.2)
which finishes the proof. O

3.3. Another definition of Wp. One can identify Wp with (G/Up x G/Up)/M
where M = P/U acts on G/Up x G/Up diagonally. The identification is given by the
map
(1 mod Up,zy mod Up) — (z9Pxy', 125" mod Up).
6



Under this identification the natural left and right G-actions on (G/Up x G/Up)/M
give two actions of G on Wp, which we still call the "left” and "right” action. The
left action is just the natural G-action in the fibers of p. The right action is given by

g:(Q,z) — (9Qg ™", zg~" mod gUgg™").

The corresponding adjoint action is given by

g:(Q,z) — (gQg ", grg™" mod gUgg™").

We now claim the following

Theorem 3.4. Let P be a parabolic subgroup in GG and let U be its unipotent radical.
Let G € D*(W5) be equivariant with respect to the adjoint action. Then for every
non-degenerate character x : U — (G, the natural map

AVU,x,!g - AVU,x,*g

is an isomorphism (here averaging is performed with respect to the left action).

Let us explain why Theorem B4 implies Theorem [[J(2). Let F € D%G) be
equivariant with respect to the adjoint action. We need to prove that the map

Avy 1 F — Avyy o F (3.3)

is an isomorphism. Since by Lemma B.3 F is a direct summand of Sp o Rp(F) it is
enough to show that (B3]) holds for the latter. It follows from the fact that « is a
proper morphism that we have the natural isomorphisms of functors

Avp 1085 = SpoAvyy and Avyy . 0 Sp > Spo Avyy ..

Hence it is enough to show that (B.J) holds for Rs(F). However, it is clear that
Rp maps ad-equivariant complexes to ad-equivariant ones which finishes the proof
by Theorem .4

3.5. The rest of this section is occupied by the proof of Theorem B.4.

Let Yg denote the open U-orbit on Y5 and let W% denote its preimage in Wg.

First of all we claim that both Avy, .G and Avy,G are equal to the extension
by zero of their restriction to W%. Indeed we must show that the x-restriction of
either of these sheaves to the fiber of p : W — Y% over any parabolic () which is
not opposite to P is equal to zero. Let us denote this restriction by H. This is a
complex of sheaves on p~(Q) = G/Ug. The fact that G is equivariant with respect
to the adjoint action implies that both Avy, .G and Avy, .G are equivariant with
respect to the adjoint action of U. Hence H is equivariant with respect to the left
action of U N Ug. On the other hand, it is clear that H is (U, x)-equivariant with
respect to the left action of U. Thus our statement follows from the following result
which is equivalent to Lemma P.6;: let Q be as above (i.e. Q is conjugate to P but it
is not in the generic position with respect to P); then the restriction of x to U N Ug

is non-trivial.
7



It remains to show that the map Avy,.G — Avy, .G is an isomorphism when
restricted to W2

The map u — uPu~" is an isomorphism between U and Y. Let & : W2 — U be
the composition of the natural projection W2 — Y3 with this isomorphism. Define
now a new G-action on W3 (denoted by (g, w) — g x w) by

g9 xw = r(w)gr(w) " (w)
(in the right hand side we use the standard left action of G on W).

To finish the argument we need the following general (and basically tautological)
result:

Lemma 3.6. a) Let H be an algebraic group, and X be an algebraic variety equipped
with two actions ¢1, ¢o of H. Suppose that the two actions differ by a conjugation,
i.e. there exists a morphism of algebraic varieties ¢ : X — H, such that

$1(9)(x) = P2(c(z) - g - c(2) ") (2)

for all g € H, x € X. Then for any character x : H — G, we have canonical
isomorphisms of the averaging functors corresponding to the two actions:

o1 o2
A,UHO(J o AUH,X,!’

¢1 _ o2
AUHOQ* T AUH,X,*'

b) Let Hy, Hy be two algebraic groups, ¢; be an action of H; on an algebraic variety
X; (wherei=1,2). Let f : X; — X5 be a morphism, and assume that there exists a
morphism s : H; X X1 — Hs, such that

f(@1(h1)(21)) = ¢2(s(h1, 21))(f (7))

for x1 € X1, hy € Hy. Then for any Hy-equivariant complex of constructible sheaves
on Xy the complex f*(X) is also H; equivariant. [J

Part (a) of Lemma B.G shows that both averaging functors Avy ., and Avy, . do
not change when we replace the old action by the new one. Also, since our G is
equivariant with respect to the adjoint action it follows that G|y0 is also equivariant

P

with respect to the new action of U by part (b) of Lemma JB.6. The statement now
follows from Theorem [[LJ(1).
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