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MODULES OVER THE SMALL QUANTUM GROUP AND
SEMI-INFINITE FLAG MANIFOLD

S. ARKHIPOV, R. BEZRUKAVNIKOV, A. BRAVERMAN, D. GAITSGORY, I. MIRKOVIC

To V. Drinfeld on the occasion of his 50th birthday

ABSTRACT. We develop a theory of perverse sheaves on the semi-infinite flag manifold
G((¢))/N((¢)) - T[[t]], and show that the subcategory of Iwahori-monodromy perverse
sheaves is equivalent to the regular block of the category of representations of the
small quantum group at an even root of unity.
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INTRODUCTION

0.1. Motivation. Let G be a reductive group. The purpose of this paper is to show
that a certain remarkable abelian category A can be realized in (at least) three seem-
ingly different contexts as a category of representations of some sort. This abelian
category has a significance, since it can be thought of as a ”local geometric Langlands”
category, corresponding to an unramified local system. Let us try to explain this point,
even though the local geometric Langlands correspondence has not been yet properly
formulated. As a result, the discussion in this subsection will not be rigorous.

Let us recall that the global geometric Langlands correspondence aims to attach to
a local system o : 71(X) — G (here X is a smooth and complete curve) a perverse
sheaf F, on the stack Bung, classifying principal G-bundles on X; one requires F, to
satisfy the Hecke property with respect to G.

The perverse sheaf F, should be thought of as a ”higher” analogue of an unramified
automorphic function f, with Langlands paramaters given by o (the latter makes sense,
of course, only when the ground field is finite). To simplify the discussion, let us assume
that the unramified automorphic representation 7, containing f,, lies discretely in the
corresponding Lo space and, moreover, that all of its local components are irreducible
unramified principal series representations.

Let us now fix a point x € X, and instead of just one automorphic function f, let
us consider the sub-space (7,), C 7, consisting of vectors invariant with respect to

/1;[,5 G(O,). This is a representation of the locally compact group G(X,) (here for
x xT

a place 2/ € X, Op and X, denote the local ring and the local field at this point,
respectively).

According to the Langlands philosophy, (7, ), should be completely determined by
the local Galois representation o,. Since o was assumed unramified, o, boils down
simply to the conjugacy class of the image of the Frobenius element.

Let us now try to guess what a geometric analogue of the vector space (7, ), might
be. Let °° Bung be the moduli stack of principal G-bundles on X with a full level
structure at x .

We propose that there should exist an (abelian) category A, acted on by G(X,)
by functors (here G(X,) is understood as the corresponding group ind-scheme), and a
functor from A to the category of perverse sheaves on *° Bung, whose image consists
of perverse sheaves that satisfy the Hecke property with respect to ¢ an X — z. !

1This, rather crude, form of the guess for what the local geometric Langlands correspondence might
be, has been voiced independently by many people, and we by no means claim primacy in this matter.
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The above considerations on the function-theoretic level suggest the following can-
didate for A. Namely, this should be the category of perverse sheaves on the affine
Grassmannian Grg = G(X,)/G(0,) that satisfy the Hecke property (cf. Sect. 1.3.6 for
the precise definition).

Recall now that (7, ), could also be realized as an (irreducible, spherical) principal
series representation. Therefore, it is tempting to realize the category A in terms of
perverse sheaves on the semi-infinite flag manifold G(X,)/N(X;) - T(O,). This is the
point of departure for the present paper.

Before we proceed to the description of the concrete problem that is posed and solved
here, let us mention one more incarnation of the category A. Namely, the Beilinson-
Drinfeld construction of Hecke eigensheaves via quantization of the Hitchin integrable
system suggests, that the category A should be also equivalent to the category of
modules over the affine algebra at the critical level, with a fixed central character,
corresponding to some oper on the formal disc around .

This category of representations can indeed be connected to A. In the forthcoming
work [FG] a functor is defined from the D-module version of category A to a certain
category of modules over the affine Kac-Moody algebra at the critical level with a
fixed central character. It is conjectured in [FG] that this functor is an equivalence of
categories. Moreover, it is proved that it is fully faithful, and in the next paper the
authors of loc.cit. will show that it indeed is an equivalence of categories when resricted
to the Iwahori equivariant subcategories.

What is unfortunately unavailable at the moment, is a direct link between critical
level representations and the cattegory of sheaves on G(X)/N(X,) - T(0z). Such a
link, which was forseen by Feigin and Frenkel in [FF] as a localization-type theorem
for sheaves on G(X,)/N(X;) - T(0,), was the source of many people’s interest in the
study of both categories.

0.2. The present work. The goal of this paper is to connect the category of Hecke

eigen-sheaves on the affine Grassmannian, denoted Hecke(Grg, G) (or rather its graded

L]
version, denoted Hecke(Grg, G)), to the category of perverse sheaves on the semi-infinite
flag manifold. An immediate problem that one runs into is that the latter category does
not a priori makes sense:
The semi-infinite flag manifold, thought of as G(K;)/N(X;) - T(0,), does not carry
an algebro-geometric structure that would allow for the theory of perverse sheaves, or
D-modules, in the way it is known today.

We get around this difficulty as follows. We define an ”artificial” category Perv (fﬂ%)
that possesses the natural properties that one expects from the yet non-existing cat-
egory of perverse sheaves on G(X,)/N(X,) - T(Oz). The approach to the definition
of Perv (3"[ %), developed in this paper, was initiated in [FM], and it uses a geometric
object, denoted Bun -, introduced by Drinfled.

The space Buny - is a finite-dimensional (or, rather, ind-finite dimensional) approx-
imation to G(X,)/N(X;) - T(0;), and it has as an input a global curve X. By defini-
tion, Buny- classifies principal G-bundles on X endowed with a possibly degenerate
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reduction to the maximal unipotent subgroup N, and it contains the stack Bunp-
classifying N ~-bundles on X as an open substack.

The realization of Perv(&"l%) via Buny- is natural from the geometric Langlands
perspective as well: the space Buny- is used to define geometric Eisenstein series by
taking the direct image under the natural projection to Bung (cf. [BG]). Therefore,
such incarnation of Perv (?l%) implies the existence of a functor from A to the (derived)
category of perverse sheaves on *° Bung.

Having defined the category Perv (fﬂ%), we have at our disposal a naturally defined

° ~
functor from Hecke(Grg, G) to it. However, we do not have any real evidence as to
whether this functor should be an equivalence. Quite possibly, to make this functor an
equivalence, one has to modify both categories by imposing some Noetherianness con-

dions on the Hecke(Grg, G) side, and restrictions on the behaviour "at the boundary”
on the Perv(?l%) side.

The problem arising here is similar to the one in the definition of the Schwarz space
on G(X;)/N(X,) in the function-theoretic context in [BK]. Identifying the image of

Hecke(Grg, G) inside Perv (Hfl%) appears to be an interesting problem, and it is closely
related to giving a geometric definition of Fourier-transform functors of loc. cit.

However, if instead of the entire Hecke(Grg,G) and Perv (fﬂ %) we work with the

[ ]
subcategories, denoted Hecke(GrrG,G)I0 and Perv(&"l%)lo, respectively, consisting of
Iwahori-monodromic objects, the required Noetherian and boundary conditions are
easy to spell out, simply by requiring that our objects have finite length.
Thus, the main result of this paper, Theorem 6.1.6, states that the category, de-

° ~
noted Hecke(Grg,G)I{frt, consisting of Artinian and Iwahori-monodromic objects in

Hecke(Grg, G), is equivalent to the subcategory of Artinian objects in Perv (rﬂ%)l ’.

The method of proof of Theorem 6.1.6 relies rather heavily on the specifics of Iwahori-
monodromic situation. Namely, we use the fact that both categories are hereditary (i.e.,
in many ways similar to the usual category O). In particular, they both have standard
and costandard objects, numbered by elements of the extended affine Weyl group W,
etc.

The hereditary structure on Perv (3’"1 el ) " i5 evident basically from the stratification of

G(X3)/N(X;)-T(O4) by Iwahori orbits. However, for Hecke(Grg, G’){:ﬁ this structure
is not so evident, and it comes from another crucial ingredient of this paper, namely,

[ ]
the equivalence between Hecke(Gr(;,G)fT,t and the regular block of the category of
representations of the small quantum group, corresponding to G, at an even root of
unity.

The latter equivalence results by combining the main result of [ABG] that links
representations of the big quantum group and perverse sheaves on Grg, and [AG],
where an explicit relation between the categories of representations of the big and
small quantum group is established.
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We should point out, however, that the present paper relies formally on neither
[ABG], nor [AG]. We supply purely geometric proofs for all the statements needed to
L]

establish the hereditary property of Hecke(Grg, G)fﬁ. But these statements would be
rather hard to guess, had we not had the equivalence with the quantum group as a
guide.

As a result, we also obtain that the category of Artinian objects in Perv (fﬂ%)l ’ s

equivalent to the category l:lg -mody—the above mentioned regular block in the category

of ﬁg—modules. This is our Theorem 6.1.7, which concludes the project of proving such
an equivalence, initiated and advanced almost to the end by M. Finkelberg. 2

0.3. Contents. Let us now discuss the organization and contents of the present paper.

Section 1 reviews the theory of modules over the big and small quantum groups.
In Sect. 1.1 we recall the basic definitions related to corresponding categories of rep-
resentations, and the quantum Frobenius homomorphism. In Sect. 1.2 we recall the
realization of the category of representations of the small quantum group as represen-
tations of the big quantum group, satisfying the Hecke property. In Sect. 1.3 we recall
the [ABG] equivalence between the regular block of the category of representations of
the big quantum group and Iwahori-monodromic perverse sheaves on the affine Grass-
mannian; we also introduce the category of Hecke eigen-sheaves on the Grassmannian
and discuss its relation to the category of representations of the small quantum group.

Section 2 reviews some basic properties of Iwahori-equivariant perverse sheaves on
the affine Grassmannian. In Sect. 2.1 we give a geometric proof of an irreducibility
result on convolution of certain perverse sheaves, which translates by means of [ABG] to
the Steinberg-type theorem for representations of the quantum group; some ingredients
of the proof will be used later on for a crucial irreducibility result in Sect. 5.3. In Sect.
2.2 we discuss the baby Whittaker category on the affine Grassmannian and its relation
to a certain Serre quotient category of Perv(Grg)! O; the discussion here largely repeats
the one in [AB]. In Sect. 2.3 we apply the results of the previous subsection to establish
a crucial result about cosocles of some costandard objects in Perv(Grg)IO; this result
will be essential for the proof of the main theorem.

Section 3 is devoted to the study of baby (co)Verma modules over the small quan-
tum group, which are the building blocks of the category of its representations. In
Sect. 3.1 we translate the properties of baby co-Verma modules into properties of the
corresponding modules over the big quantum group, satisfying the Hecke property. In
Sect. 3.2 we reprove the corresponding facts (often by different methods) in the context
of Iwahori-monodromic perverse sheaves on Grg.

In Section 4 we discuss the main object of study of this paper, namely, the category

Perv (3’"1 %), which is a surrogate for the non-existing category of perverse sheaves on

2An equivalence between li;-mody and the would-be category of Iwahori-monodromic perverse
sheaves on G(X5)/N(Xz)-T(04) has also been guessed independently by several people, among them,
Lusztig and Feigin-Frenkel, but we could not find a precisely formulated conjecture in the literature.
Our formulation as well as the strategy of the proof are due to Finkelberg.
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In Sect. 4.1 we discuss the underlying geometric object—the stack Buny- along
with its numerous variants. In Sect. 4.2 we finally introduce the category Perv (?l%),
the main technical ingredient being the factorizability property, observed in [FFKM];
we show that that Perv (3’"1 %) by and large behaves in the way one expects from the
analogy with G(X;)/N(X;) - T(Oz). In Sect. 4.3 we study the most basic objects
in Perv(&"l%), namely, the spherical ones, and show that the resulting category is
semi-simple. Finally, in Sect. 4.4 we discuss the Iwahori-monodromic subcategory of
Perv (3’"1 %), and prove some results that are parallel to the corresponding assertions
about Iwahori-monodromic sheaves on Grg.

As was mentioned above, the category Perv (971%) must be acted on by the group
ind-scheme G(X;) by auto-functors. A rigorous incarnation of this phenomenon is the
action of perverse sheaves on G(X,) by Hecke functors (the latter are defined on the
level of the corresponding derived category). In Sect. 5 we study this convolution
action in our realization of Perv (9"l %) via Buny-.

In Sect. 5.1 we define the convolution action and show that it indeed respects the
category Perv(&"l%). In Sect. 5.2 we establish a crucial semi-smallness result that

allows to pass from perverse sheaves on Grg to Perv (9"l %) (this is largely borrowed
from [FM] and [BG]). In Sect. 5.3 we refine the discussion of the previous subsection
and show that certain convolution diagrams give rise to small (vs. semi-small) maps,
thereby implying certain irreducibility properties. In Sect. 5.4 we establish another
important technical result that describes the convolution of standard objects.

Finally, in Section 6 we state and prove the equivalence between the subcategories

[ ]
of Artinian objects in Hecke(GrrG,é)I0 and Perv(i}"l%)lo. In Sect. 6.1 we define the
required functor. In Sect. 6.2 we show that this functor is exact and reduce the
equivalence assertion to a computation of the image of baby co-Verma modules. In
Sect. 6.3 we perform the required calculation using some information on cosocles of
costandard objects in both categories.

The conventions adopted in this paper regarding the quantum group follow those
of [AG]. Conventions and notation concerning the affine Grasmannian and Drinfeld’s
compactifications follow those of [BG]. To fix the context we will work with varieties
and stacks over the ground field C, and holonomic D-modules (but we will still call
them perverse sheaves). If Y is a smooth variety, Cy will denote the (cohomologically
shifted) D-module, corresponding to the constant sheaf on it.

Acknowledgements. As was mentioned earlier, the problem solved in this paper
was both posed (and the method of solution was suggested) by M. Finkelberg back
in 1998, when the authors were at IAS, Princeton, for the special year on geometric
representation theory. We are grateful to him for the permission to publish many of
his results and ideas.

We would also like to thank A. Beilinson, V. Drinfeld, B. Feigin, E. Frenkel and
D. Kazhdan for sharing their ideas and stimulating discussions.
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It is an honour for us to dedicate this paper to Vladimir Drinfeld. Along with
numerous other things in modern mathematics, the three main objects of study in this
paper—quantum groups, Hecke eigen-sheaves and Bunp- were invented by him.

1. BACKGROUND: MODULES OVER THE BIG AND SMALL QUANTUM GROUPS

1.1. Basics of quantum groups.

1.1.1. Root data. Let G be a reductive group with connected center. Let G be its
Langlands dual; by assumption the derived group of G is simply connected. >

We will denote by T (resp., T') the Cartan group of G (resp., G), and by W the Weyl
group. We fix Borel subgroups B, B~ C G (resp., B, B~ C G) and think of T (resp.,
T) as a subgroup of G (resp., G) equal to their intersection.

We will denote by A (resp., A) the coweight (resp., weight lattice) of G; by AT (resp.,
A™) we will denote the subset of dominant coweights (resp., weights). We will denote
by (-,-,) the pairing between the two. We will denote by W,ss the extended Weyl
group W x A.

Let J be the set of vertices of the Dynkin graph of G; for + € J we will denote by
&, € A (resp., a, € A) the corresponding simple coroot (resp., root). We will denote by
Apos (resp., AP?%) the sub-semigroup spanned by positive coroots (resp., roots).

Let (-,-) : Span{a,} ® Span{a,} — Z be the canonical inner form. In other words,
||| = 2d,, where d, € {1,2,3} is the minimal set of integers such that the matrix
(o, ;) :=d, - (o, &) is symmetric.

We choose a symmetric W-invariant form (-,-), : A ® A — Z, such that there exists
a sufficiently large positive even integer ¢, divisible by all d,, such that

(dw 5‘)5 = gl . (ala 5‘>7
VA € A, where ¢, = d%.
We will denote by ¢, the resulting map A — A, and also the map T — 7.

1.1.2. The big quantum group. As was mentioned earlier, our conventions regarding
representations of the big quantum group follow those of [AG]. Let Uy-mod be the
category of representations of the big quantum group, corresponding to G and ¢. By
definition, objects of this category are finite-dimensional vector spaces, acted on by the
algebraic group 7', and the operators E,, F;, Ez(m, FZ(&), that satisfy the well-known
relations. The category Uy-mod has a natural monoidal structure.

We will denote by Uy, -mod the ind-completion of Uy-mod. ILe., this is the category
of infinite-dimensional vector spaces, acted on by the same set of operators, which can
be represented as unions of finite-dimensional sub-representations.

Let B, -mod be the category of representations of the "negative quantum Borel”.
IL.e., objects of this category are finite-dimensional vector spaces, acted on by the alge-

braic group 7', and the operators F;, FZ(ZZ), which satisfy the same relations. This

3For what follows we could replace G by an isogenous group such that [G, G] is simply connected.
In this case G also has connected center.
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is also a monoidal category and there exists a natural forgetful monoidal functor

Resgf : Ug-mod — B, -mod. This functor admits a right adjoint, denoted by Indgf.
4 4

In addition there exists a natural functor Rep(7') — B, -mod, where we let the
operators I}, FZ(Z") act trivially on the corresponding vector space.
For A € A we let W» € Uy-mod be the dual Weyl module defined as Indg‘i(CA),
£

where C? is the 1-dimensional representation of 7', corresponding to \. It is known that
W?* £ 0 if and only if A € AT, Tt is also known that W* admits a unique irreducible
submodule, denoted L*, and this establishes a bijection between At and the set of
irreducibles in U, -mod.

As every Artinian category, Uy-mod splits into a direct sum of indecomposable
Artinian categories, called blocks. Slightly deviating from the accepted conventions, we
will denote by Uy-modg the direct summand of Uy-mod that contains the irreducibles
L for A of the form
weW, e A.

We will denote by Uy -mody the ind-completion of U,-modg, which is a direct sum-
mand in Uy - mod.

1.1.3. Quantum Frobenius homomorphism. Let Rep(G) denote the category of finite-
dimensional representations of G. Following [Lul] there exists a monoidal functor

Fr : Rep(G) — Uy-mod,

defined as follows. For V € Rep(G), the representation Fr(V') occurs on the same

underlying vector space, denoted V, and the action of T is given via ¢y : T — T. The

operators F,, F, act trivially, and E,(&), FZ(&) act via the Chevalleyvgenerators e fr €8

It is known that the functor Fr is fully faithful. Moreover, for A € AT
Fr(Vj‘) o~ L(b‘f(j‘)7

where V* denotes the corresponding irreducible representation of G.

Let recall that a dominant weight A is called restricted if V2 € J

(A, ) <4,

We have the following fundamental result:

Theorem 1.1.4. If A\ € A is restricted, then for every i € At
Fr(VH) @ LA ~ LATo),

Since every A € AT can be written as A\; + Ay with A\; restricted and )y in the

image of AT, the above theorem describes all irreducibles in Uy-mod. (Note that the

decomposition of a weight as above is unique modulo elements v € A, orthogonal to all
roots, i.e., those for which L” is 1-dimensional.)

Corollary 1.1.5. The functor M +— Fr(V) ® M : Uy-mod — Uy-mod preserves
Ug —mOd().
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1.1.6. The graded small quantum group. We define the category of representations of

the graded small quantum group l:lg -mod to consist of finite-dimensional vector spaces,
acted on by the algebraic group 7" and the operators F,, F,, satisfying the usual re-
lations. This is also a monoidal category, and we have a monoidal forgetful functor

[ ]
ResY? : U;-mod — 1y -mod.
U

In addition, we have a fully-faithful functor Rep(T) — l:lg -mod. By a slight abuse
of notation we will denote by C*# the 1-dimensional module over 1.14, corresponding to
e A

L]

Let b, -mod be the category of representations of the corresponding ”graded small

negative Borel subgroup”. l.e., this is the category of vector spaces, acted on by T and

the F,’s, satisfying the same relations. We will denote by Resff the forgetful functor

by

1.1@ -mod — b, -mod and by Indf{ (resp., Coindf{ ) its right (resp., left) adjoint. We

bZ bZ
also have a functor Rep(7") — b, -mod.
Lemma 1.1.7. Both functors Ind,* and Coind,’ are ewact and faithful and for a
b, b,
character \ of T, ‘ ‘
Ind¥ (C) ~ Coind™ (C=#:(29)+20),
by by
We will denote the module Ind¥* (C*) by M* and call it the baby co-Verma module
b,
of highest weight \. One easily shows that the socle of each M?* is simple. We will

[ ]
denote the corresponding irreducible by L*. Thus we obtain a bijection between A and

the set of irvreducibles in l:lg -mod.
For i € A, we have:

]\.4/\+¢‘(‘1) ~ Cl® ]\.4’\ and i/\+¢‘(‘1) ~Cl® iA.
In addition, we have the following result:

Proposition 1.1.8. If A is dominant and restricted,
[ ]
LA ~ ResT* ().
u
Being Artinian, the category l:lg -mod also admits a decomposition into blocks. We
will denote by 1.1@ -mod the direct summand of 1.1@ -mod that contains the irreducibles

I for X of the form w(p) — p + ¢¢(N\) w € W, X € A.

Lemma 1.1.9. The sub-category Uy-modg C Uy-mod is the preimage of 1.1@ -mody C

l:lg -modg under the forgetful functor Res?‘,
g
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Finally, we will denote by 1.1@— mod (resp., ﬁg—modo) the ind-completion of 1.1@ -mod
(resp., 1y -mody).
1.1.10. The non-graded small quantum group. We define the category uy-mod to consist
of finite-dimensional vector spaces, acted on by the group T, := ker(¢y : T'— T'), and

the operators K, - E,, F,, subject to the usual relations. Note that u;-mod is not a
monoidal category; however, we have a well-defined functor of tensor product on the

right by an object of ﬁg -mod:

N € uy-mod, M € tiy-mod — N & Resy! (M).
The following proposition describes the relation between the small quantum group

and the quantum Frobenius homomorphism:

Proposition 1.1.11.
(1) For M € tg-mod and X\ € A,

Resi (CX & M) = Resi (M).

(2) For M as above the mazimal trivial sub- (resp., quotient-) object N' of Res (M)
comes from a sub- (resp., quotient-) object M' of M, which is in the image of the

functor Rep(T) — 1ty -mod.
(3) For M € Uy-mod, V € Rep(G),
Resy" (Fr(V) ® M) ~ @ C” @ ResY (M) @ V (i),
Uy 13 Uy
where V () denotes the v-weight space of V, and C” the corresponding 1-dimensional
representation of ftg.

(4) For an object M € Uy-mod the mazimal trivial sub- (resp., quotient-) object N’ of
Resgf (M), comes from a sub- (resp., quotient-) object M' of M, which is in the image
of the functor Fr.

Let b, -mod be the category consisting of finite-dimensional vector spaces, acted
on by the group T, and the operators F,, satisfying the usual relations. We have the
evident functor Rep(7;) — b, -mod, such that the analog of Lemma 1.1.7 holds. For a

character X : Ty — C* we will denote by M?* the module IndZﬁ, (CH).
We have:

Lemma 1.1.12. For a character A € A we have:

(1) Resﬁﬁ (]\.4)‘) ~ M>, where X is the restriction of A to Tj.

(2) The module L = Resgg(LA) depends only on the class of X modulo ¢¢(A), and is
wrreducible. Moreover, these are all the irreducibles in up-mod.

Let uy-mody be the direct summand of u,-mod, that contains the trivial represen-
tation.
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Lemma 1.1.13. The subcategory 1.1@ -modgy C 1.1@ -mod is the preimage of uy-mody C
ug-mod under the forgetful functor.

We will denote by uy-mod (resp., uys-modp) the ind-completion of uy-mod (resp.,
ug-modp).

In the sequel we will need the following assertion:
Proposition 1.1.14. There exists a fully-faithful functor Frg— : Rep(B~) — B, -mod,
such that
(1) We have a commutative diagram of functors.

Rep(G) — ", U,-mod

. U
G Res_ ¢
ResB7 J{ eSBZ l

~ Frp

Rep(B~) —— B, -mod

I I

Rep(T) —2— Rep(T)
(2) For N € B, -mod the mazimal sub- (resp., quotient-) space of N, on which b, acts
trivially, is a sub- (resp., quotient-) module, which lies in the image of the functor Frp.

1.1.15. Weyl group action. Following Lusztig, to every element w of the Weyl group
we can attach an invertible operator acting functorially on the vector space underlying
every object of Uy-mod, or which is the same, an automorphism of the forgetful functor
Uy-mod — Vect. This automorphism is well-defined modulo elements of T'.

This construction can be reformulated as follows. To every w € W we attach a self-
functor F,, : Uy-mod — Uy-mod, that commutes with the forgetful functor to vector
spaces, and an isomorphism

wy : I1dy, -mod = Fuw-

Restricting these data to the sub-category Rep(G) C Uy-mod we obtain that the
pair (F,,w,) gives rise to an element ws € G that normalizes T'.

Lemma 1.1.16.

(1) There exists a monoidal self-equivalence Fy, : 1.1@ -mod — ﬁg -mod that commutes
with the restriction functor Uy-mod — ﬁg -mod.

(2) There ezists a self-equivalence Fy, : ug-mod — uy-mod, compatible with the functor

L]
tensor product functor uy-mod Xuy-mod — uy-mod.

We will return to the discussion of functors F,, in Sect. 1.2.5.

L]
For an element w € W let b,”~ be the corresponding subalgebra of ﬁg. Let us denote

by ¥ M? the ﬁg—module induced from the b, -character C*. For w = 1 we recover M?™.
We have:

OAPY) & By (M),
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As in Lemma 1.1.7,

WAL & Coindit  (CA-(0r20)=20)),

w,—
bl

A ~
In particular, the module ¥0AMA~9¢(20)+20 {5 jsomorphic to what is usually called

the baby Verma module with highest weight A. Since all Comd“‘ (CA) have simple

cosocles, we deduce that all twisted baby co-Verma modules also have simple cosocles.
1.2. Modules over u; as Hecke-proper modules over Uj,.

1.2.1. The Hecke categories. Following [AG], we introduce the category Hecke(Uy, Q)
to consist of pairs

(M € Uy-mod, {ay, VV € Rep(G)}),

where each ay is a map of Up-modules
av:Fr(V)®M—>M®K

(for V € Rep(G), the notation V stands for the underlying vector space), such that

e For V=C, ay : M — M is the identity map.
e For a map V; — Vh, the diagram

V) oM —2 MoV

l l

Fr(h) @ M —2s M eV,
cominutes.
e A compatibility with tensor products holds in the sense that the map

Vl ®RVo

FrVi)@Fr(Vo) @ M = Fr(Vi@Ww) oM — " MeaViogVh—-MeVieV,

equals

id Qa
F(V) @ Fr(1) o M — 2 (M) o Mao Vs © Mo Vi Vs

It was shown in [AG] that the maps ay are necessarily isomorphisms.

Morphisms in this category between (M, cay ) and (M’ o) are Ug-module maps
M — M’ preserving the above structures. Evidently, Hecke(Uy, G’) is an abelian cate-
gory.

The main result of [AG] is the following theorem:

Theorem 1.2.2. The category Hecke(Uy, G’) s naturally equivalent to uy-mod.

We recall that the functors Hecke(U;, G) = u,-mod are defined as follows. To
N € u,-mod we attach the object in Uy-mod by taking Ind}i‘(N). It satisfies the
Hecke condition due to Proposition 1.1.11.
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Vice versa, given an object M of Hecke(Uy, ), the restriction ResU (M) is acted on
by the algebra O, and the corresponding object of uy - mod is by deﬁnltlon the tensor
product ResY (M) 89 C1, where C; is the skyscraper at 1 € G.

G

A typical example of an object of Hecke(Uy, G) is obtained by taking Fr(Rg) @ M,
where R is the algebra of functions on G, regarded as a representation of G, and
M € Uy-mod.

We say that an object of Hecke(Uy,, G) is finitely generated if it admits a surjection
from an object of the above form for M € Up-mod. Evidently, the subcategory of
finitely generated objects of Hecke(Uy, G), denoted Hecke(Uy, G) 4., transforms under

the equivalence 9f Theorem 1.2.2 to ug-mod. In particular, this subcategory is Artinian,
and Hecke(Uy, () is the ind-completion of Hecke(Uy,G)y.q.-

Consider the subcategory Hecke(Uy, G)g of Hecke(Uy, &), equal to the preimage of
U;-mody under the forgetful functor. According to [AG], the equivalence of Theo-
rem 1.2.2 induces an equivalence between Hecke(Uy, G’)o and uy-mody. We will denote
by Hecke(Uy, G)O,f_g_ the intersection of Hecke(Uy, G)g with Hecke(Uy, G)f,g,; this cat-
egory is equivalent to uy-mody.

1.2.3. Hecke categories, graded version. We define the category Hecke(Uy, G’) as follows.

Its objects are A-graded objects M = & M, of Up-mod, each endowed with a collection
of grading-preserving maps ay, YV € Rep(G)

FV)oM~MaV

(where the grading on the LHS is induced from that on M, and on the RHS is diagonal
with respect to the action of T on V'), which satisfy the same conditions as in the
definition of Hecke(Uy, G).

Maps in this category are grading preserving maps in Uy-mod that intertwine the
corresponding ay’s. We have the following graded version of Theorem 1.2.2:

Theorem 1.2.4. The category Hecke(Ug,G) s equivalent to L.lg—mod. The forgetful
functor Hecke(Uy, G) — Hecke(Uy, G) identifies under this equivalence with Resﬁﬁ

We will denote by M +— M{ji} the functor on Hecke(Uy, ) given by the shift of
grading by i € A. Under the equivalence of Theorem 1.2.4 this functor transforms to
the functor N +— CF ® N.

Let Hecke(Uy, G)o be the preimage in Hecke(Uy, G) of Uy-mody under the obvious
forgetful functor. This subcategory goes over under the equivalence of Theorem 1.2.4

.
to uy-mody.

Let Rx be the algebra of functions of G, regarded as a A-graded representation of G
(the grading comes from the actlon of G on itself on the right). A typical example of

an object of Hecke(Ug, G) is Fr(RG) ® M for M being a A-graded object of Uy-mod.
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° . o -
We will denote by Hecke(Uy, G) t.4. (resp., Hecke(Uy, G)o,14.) the corresponding sub-
categories of finitely generated objects. These subcategories transform under the equiv-

alence of Theorem 1.2.4 to L.lg -mod and l:lg -mody, respectively.

1.2.5. Action of the dual group. Note that the equivalence of Theorem 1.2.2 makes
it explicit that the category u,;-mod carries an action of the dual group by auto-
equivalences. The latter means that to every N € uy- mod we can attach a family N
of objects of u;- mod, parametrized by G, such that the natural associativity condition
holds.

The corresponding family is defined in the language of Hecke(Uy, G) as follows. For
(M, {ay}) € Hecke(Uy, G) its fiber at g € G is (M, {g - ay}), where each g - ay is the
composition of o with the automorphism induced by g on V. We will use the notation
N — 8N for these functors.

_— o ~
Consider now the case of ;- mod ~ Hecke(Uy, G). In this case we do not have
an action of the entire G on the category, but rather of the normalizer of the Cartan
subgroup T, due to the grading condition.

Lemma 1.2.6. For a pair (Fy,wy) as above, the functors Fy,
uy-mod — uy-mod and flg -mod — 1.1@ -mod

are naturally isomorphic to the functors N +— “GN, where wg is the corresponding
element in the normalizer of T in G.

1.2.7. Compatibility with duality. Recall that both categories Uy-mod and l:lg -mod
carry a canonical self anti-equivalence (contragredient duality), M +— M, compati-

ble with the forgetful functor ResY‘. We would like to express the duality functor on
U

1.1@ -mod in terms of Hecke(U;, G)¢ ..

Thus, let N be an object of flg -mod and M € Hecke(U,, G) the object corresponding

to it under Theorem 1.2.4. Since M € Hecke(Uy,G)¢g4., it can be represented as the
cokernel of an arrow

& Fr(Re) © M}{il} — & Fr(Rg) © MZ{ji3},
J

)

where the indices ¢ and j run over some finite sets, and Mil, M ]2 are objects of Uy-mod.

An arrow as above comes from a system of maps in Uy -mod
M} — B (Vi) @ M} @ (V39" (32 — i)

(2

where V% are some finite-dimensional representations of G. By adjunction, we obtain
a system of maps

Fr((Vi’j)*> ® M} @ V™ (jij — 7)) — M,
and applying the duality,
(12)Y = B (Vo)) Y) @ (M) @ (V9) (2 - d).
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Note that for a representation V of G,
VY () = V*(—f).
o S \V
Hence, if we set U" = ((Vw)*> , we obtain a system of maps map
(M})V ~ R U ® (M})V ® (U™)* (. — fi2),
which in turn gives rise to a map in Hecke(Uy, G):

® Fr(Rg) ® (n2) (72} — @ Fr(Re) ® (M})V{g}}.

Then NV corresponds to the object in Hecke(Uy, G’) equal to the kernel of the latter
map.

1.3. Realization via the affine Grassmannian.

1.3.1. Let Grg ~ G((t))/G][[t]] be the affine Grassmannian corresponding to G, and
let Perv(Grg) denote the category of perverse sheaves on it.

Let Sphy denote the category of G[[t]]-equivariant perverse sheaves on Grg. We
recall that Sph; is naturally a monoidal category that acts on Perv(Grg) by convolution
functors:

F € Perv(Grg), 8 € Sphg — F 8.

Moreover, Sph; possesses a natural commutativity constraint, and as a tensor cat-
egory it is equivalent to Rep(G). We will denote this equivalence by V' € Rep(G) —
V € Sphs. Under this equivalence, the irreducible representation yA goes over to

VA =1C 5.Gre» Where the latter is the IC sheaf on the closure of the orbit Gry = G[[t]]- A

1.3.2. For k € N we will denote by G* the corresponding congruence subgroup in
G[[t]], and by Perv(Grg)C" the category of G*-equivariant perverse sheaves on Grg.
For k = 0 we recover Sphg; for £ > 0 this is a full subcategory of Perv(Gr¢), stable
under extensions, since G¥ is pro-unipotent.

Let I (resp., I°) be the Iwahori subgroup of G (resp., its unipotent radical). We will
denote by Perv(Grg)?, Perv(Grg)IO, D(Grg)?, D(Gr(;)lO the corresponding categories
of equivariant perverse sheaves and triangulated categories.

Recall that I-orbits on Grg are parametrized by Worr/W, which we will identify
with the set of elements in W, s, right-minimal with respect to W. Any such element
w can be uniquely written as

wW=w- A\,
where w € W, A € AT. The condition of being right-minimal with respect to W implies

that whenever for some ¢ € J, we have (o, \) = 0, then w(q,) € AP,

For w as above we will denote by ICy gr., the IC sheaf on the closure of the corre-
sponding I-orbit. By W*® (resp., W"?) we will denote the corresponding costandard
(resp., standard) objects corresponding to the extension by * (resp., !) of the constant
perverse sheaf on this orbit.
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Since I-orbits and I°-orbits on Grg coincide, the irreducibles in Perv(Grg)! are the
same as in Perv(Grg)!".

In the sequel we will also need some notation pertaining to the affine flag variety
Flg = G((t))/I. We will denote by Perv(Flg) (resp., Perv(Flg)!) the category of
perverse (resp., I-equivariant) sheaves on Flg, and by D(Flg) (resp., D(Flg)!) the
corresponding triangulated category.

The category D(Flg)! has a natural monoidal structure, and it acts by convolution
on D(Flg). In addition, we have a natural convolution functor

D(Flg) x D(Grg)! — D(Grg).

For w € W, we will denote by j. 4 (resp., jip) the costandard (resp., standard)
object in Perv(Flg)! attached to the corresponding I-orbit on Flg. We have:

Jgins * Jro = Jryiy o A0 gy * Jlipy = J1aby o
whenever [ (1) +1(w2) = I(w1 -W2), where [(-) is the length function on We . Morover,
if W is right W-minimal,

. Ty . ' ~
Jes * 01,Gre = W5 and ji g * 01,Gr = WYL

1.3.3.  According to [KT] combined with [KL] (or, alternatively by [ABG], adapted to
the even root of unity case), we have the following:

Theorem 1.3.4. There exists an equivalence of categories
Loc : Uy-modg — Perv(Grg)IO,
such that the functor
U;-modg x Rep(G) — Ug-modg : M,V +— Fr(V) @ M
identifies with
Perv(Grg)” x Sphy — Perv(Grg)™ : 8,V — S+ V.

Moreover, the contragredient duality functor on Uy-mod goes over to Verdier duality
on Perv(Grg)™.

Let us describe the image of irreducibles under this equivalence. If A € AT is such
that L € Uy-modg, we can uniquely write

A=V +w T (p) - p,
where A € A. In this case W :=w -\ € Wy is right W-minimal. Then
Loc(L*) ~ ICyg.are and Loc(W?) o~ W%,

Note also that a weight \ as above is restricted if and only if the pair (A, w) satisfies
the following:

(i, Ny = 1if —w(ay) € APos,

Hence, for each w, the corresponding element A is well-defined modulo characters of
G/[G,G] (which are the same as cocharacters of Z(G)). We will make such a choice

{ (o, Ny = 0 if w(a;) € APos
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and denote the corresponding irreducible in Perv(Grg)! by L£%. We will assume that
for w =1, LY = d1,Gr,. Note that L0 ~ ICy,.7 Gry, Where p' is some element of A,
for which (a,, p') =1 for Vo € 3. Such /' exists due to the assumption that the center
of G is connected. Note that 2/ is not in general equal to 2p, the latter being the sum
of positive coroots.

The following is a corollary of Theorem 1.1.4 combined with the equivalence of The-
orem 1.3.4:

Theorem 1.3.5.

(1) For any w and ji € A*, the convolution LY % 1Cy Gy, is irreducible and isomorphic
to ICIU'(B\-F/J),GI‘G’ Zf LY = ICU)'S\,GI‘Q'

(2) Any irreducible object of Perv(Grg)! has the form LY *1Cy.arg for unique w and
i.

For completeness, in the next section we will give a purely geometric proof of this
result.

1.3.6. Hecke categories. Let Perv(Grg) denote the ind-completion of Perv(Grg). Let

Hecke(Grg, G) denote the category, whose objects are pairs
(8 € Perv(Grg), {ay, YV € Rep(G)}),

where each ay is a map
§xV—-V®S§,

such that the collection {ay } satisfies the same compatibility conditions as in the
definition of Hecke(Uy, G). As in the case of the quantum group, one shows that the
maps ay are then automatically isomorphisms.

Morphisms between (8!, {ai,}) and (82, {a?,}) are maps 8! — 82 that intertwine the

data of ay. The category Hecke(Grg, GG) is evidently abelian.

Let R be ind-object of Sphg, corresponding under the equivalence Rep(G) ~ Sphg

to Rs. A typical example of an object of Hecke(Grg, ) is obtained by setting
§:=8' xRy

for 8! € Perv(Grg), where the Hecke isomorphisms come from the canonical isomor-
phisms
RG *V ~ K (039 iRGm

As in the case of Hecke(Uy, ), the category Hecke(Grg, () is naturally acted on by
the group G.

We say that an objet of Hecke(Grg, G) is finitely generated if it admits a surjection
from an object of the form 8! x R with 8! € Perv(Grg). This condition is equivalent
to the fact that the functor of Hom from this object commutes with direct sums.

Conjecture 1.3.7. A sub-object of a finitely generated object of Hecke(Grg, G) is
finitely generated.
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We will denote by Hecke(Grg, G)C" (resp., Hecke(Gre, G)!”, Hecke(Grg, G)T) a ver-
sion of the above category, where § is assumed to be an object of the ind-completion
of the corresponding category Perv(Grg)Gk (resp., Perv(Grg)!’, Perv(Grg)).

As we shall see shortly, a particular case of Conjecture 1.3.7, concerning Perv(Grg)’ O,
follows easily from Theorem 1.3.5.

We introduce a graded version Hecke(Grg, G) of Hecke(Grg, G) analogously to the

definition of Hecke(Uy, G): its objects are pairs (8, {ay}), where § is a A-graded object
of Perv(Grg), and the maps ay preserve the gradings on both sides. Similarly, we

introduce the categories Hecke(Grg,G)Gk, Hecke(Grg, G)!°, Hecke(Grg,G):’.
All of these categories are acted on naturally by the normalizer of 7" in G.
Let Rp denote the same thing as R, where we regard it as graded via the right-
action of G on Rps. A typical example of an object of Hecke(Grg, G) is obtained by

taking 8' x R{ji} for 8! € Perv(Grg), where {ji} denotes the shift of the grading
functor.

In what follows we will state the results explicitly for Hecke(Grg, G) and its versions;

the transcription to the case of Hecke(Grg, ) is straightforward.

1.3.8. Consider now the category Hecke(Grg,é)Io. Combining Theorem 1.3.4 with
Theorem 1.2.4 we obtain:

Theorem 1.3.9. The category l:lecke(GrrG7 G)IO is equivalent to ﬁg—mo.
In particular, we obtain:
Corollary 1.3.10.
(1) The irreducibles in I:Iecke(Grg, G are of the form LY *3.2(;{;2} for some w € W
and i € A.
(2) Ewvery finitely generated object in I:Iecke(Gr(;, G)IO 1s Artinian.

We will now give a geometric proof of this fact, using Theorem 1.3.5.

Proof. Let us first see that any map 8 — L" x Ri={/1} is necessarily a surjection. (This
would imply that L% « R={j1} is irreducible.)

[ ] L]
With no restriction of generality, we can assume that 8 has the form 8’ x R{p'} for

some 8 € Perv(Grg)!”, i € A. Moreover, we can assume that §' is itself irreducible.
Then, by Theorem 1.3.5, 8/ ~ L' *1Cj g, for some w' € W, X € AP°. Hence,

(1) S’ xR} ~ & LY % Re{ff + v} @ V().
Again, by Theorem 1.3.5, the existence of a map
LY % Re{il'} @ VN — L% % R ji}
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forces that w’ = w and the map factors through the direct summand corresponding to
i/ + 7 = i and a linear functional K)‘(D) — C. Such a map is manifestly surjective.

The same argument shows that any irreducible object of Hecke(Grg, G)’ * admits a

map from some L « Rix{/i}. This establishes the first point of the corollary.

L]
To prove the second point, it suffices to show that the objects of the form 8 xR {1},

8§’ € Perv(Grg)! * have finite lengths. For that we can assume that 8’ is irreducible, and

our assertion follows from (1).
U

Let Hecke(Grg,G){:rt denote the subcategory of Artinian (or, equivalently, finitely
generated) objects of Hecke(Grg, G)! ‘. By Theorem 1.3.9, it is equivalent to the cate-

gory flg -modg. Hence, it also carries a duality functor, denoted D.
Explicitly, this functor is determined by the fact that it is exact;

it is extended to the entire Hecke(Grg, G‘){:ﬁ by the procedure described in Sect. 1.2.7.

This functor goes over to the functor N +— NV on l:lg -modg, since the equivalence of
Theorem 1.3.4 transforms contragredient duality to Verdier duality.

2. SOME RESULTS ON Perv(Grg)

2.1. Proof of Theorem 1.3.5.

2.1.1. Tt clear that point (1) of the theorem implies point (2). Indeed, for any
ICy.iarg € Perv(Grg)! define § C J to be the subset of simple roots, for which
w(a,) € AP%%. Define

Ni=v—3% NARE IR ) — 1)@y,
v J€3<O‘J ) - W, zej—3(<al v)—1)- @,

where @, are (some choice of) fundamental coweights.
Then w - \ is left-minimal with respect to W, and

~Y w ~
ICw-j\’,GrG ~ L *57],G1"G’

where 7 is a co-character of Z(G) and 6 Gr, is the d-function at the corresponding
point of Grg.
By point (1),

LY % (Icﬂ_j\/’GrG *5—ﬁ,Grg) =~ ICw-ﬂ,GrG .
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2.1.2. The assertion of point (1) is equivalent to the fact that End(L" x1C; qr,) ~ C.
By adjunction, this is equivalent to the fact that if LY = IC AGre’ then

Hom (1C,,.5 g IC.0.5, v *TCGra *1C g G ) = C-

By decomposing ICj Gre *1C_y(4),ar @s a sum of irreducibles, we arrive to the con-
clusion that it is enough to show that

2) Hom (1Cu.6r6:IC, 5, rg *1Ccre ) # 0= 7 = A+ fi
Note that this would automatically imply that

(3) Hom (Ier,l;,GrG, ICw-S\,GrG *IC,LGrG> =0 for w' # w,
a fact that will be used later on.

2.1.3.  We will establish (2) by analyzing the convolution diagram. First, we need to
recall why the convolution functor Perv(Grg) x Sphg — Perv(Grg) is exact.

Let

Grg*Grg ~ G((t)) x Grg
G[it]]

be the convolution diagram, which we think of as fibered over Grg by means of pro-
jection to the first factor, with typical fiber Grg, which we think of as the second
factor. We will denote by 7 the map Grg+x Grg — Grg given by multiplication. This
ind-scheme is acted on by G((t)), and the map 7 is evidently G((t))-equivariant.

For G[t]]-orbits Grél, Gr’gf C Grg we will denote by Gré} *Gré? the correspond-
ing locally closed subset in Grgx Grg, which is fibered over Glfé1 with typical fiber

GréQ. We will denote by (Grg*Grg)H (resp., <Gré1 *Grg)u) the preimage of Gré

in Grg x Grg (resp., Gré} *Gré?) under the map .
We recall the following dimension estimates:

. T . . v 0\ P . y y
@ dimGrf) = (2., dim ( (Guff +Gr2)") = (o -+ a4 )
Hence, the dimsnion of the fibers of the map
ﬂghpz : <Gré1 *Gr%)u — Gr’g;

is < (p, fi1 + fiz — f1).
For § € Perv(Grg), F € Sph, we will denote by 8 XTF the corresponding perverse
sheaf on Grg + Grg, and by definition,

S x F = m(SXF).
To prove the exactness of convolution, by Verdier duality, it suffices to show that
the *restriction of SXTF to every (GrﬂG1 *Gr?f)u lives in the cohomological degrees
— < Ap, 1 + fiz — f1).
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It is evident that the *-restriction of $XF to GrﬂG1 *Gré? lives in the cohomological
degrees < 0. Moreover, § &"ﬂG i Gr
Observe now that the constant sheaf C <

ap 18 a pull-back of a complex on the base GrﬂG1
el

) ~\#, thought of as a complex on
Griit x Grl 2)

Gré1 *Gr , is universally locally acyclic (ULA) with respect to 7T“1 iy- Indeed, it is
G|[t])- equlvarlant, and this group acts transitively on the base. Hence,
ngﬂ § gzsgfﬂ i e @ C i
(Grél * Grgz) GrGl * GrG2 (Grgl * Grgz)

lives in the cohomological degrees
3 CNBE - N
< — codim <(Gr’é1 *Gr’gf) ,Gri! *Gr’éf) < —(p, i1 + fr2 — f1),
which is what we needed.

The same argument proves also the following. Let Y C Gré be a locally closed
subscheme. In order for § * F|y to have a non-zero 0-th perverse cohomology, it is
necessary that there exist ji' and ji%, such that the fibers of the map

0 <10 i -1
supp (h°(81 g1 ) BA (Flg ) 1 (e, )7 (4) = Y
are of dimension equal to (p, fi; + jio — 1), i.e., saturating the upper bound given above.

2.1.4. Thus, to prove (2), we must show that the fibers of the map
7r_1<(I-(w-l)))> N <(I-(w-5\))*(}ré> o <I-(w-1))).

have dimensions < (p, A + fi — ) unless 7 = A + ji. (In the latter case the map in
question is clearly one-to-one.)

Consider the orbit of the group Ady..,, (N((t))) in Grg passing through the point
w - V. Its preimage in

(I- (w - X))*Gr’é C GrgxGrg

is the union over the parameters ©/ of schemes

(Aduy N((0)) -0 ()) O (1 (w0 2)) ) 5 ((Aduy N((1)) - (- (7 = 7)) 1 Grfy),
each of which is fibered over
(5) (N(®) - w0()) N1 (Adgugy—r (1) - wo() ) € Grg,
with the typical fiber Ady.uw, N((t)) - (w - (7 — )) NG,

U
Since the intersection Ady.w, N((t)) - (w - ) NI - (w - ) consists of a single point,
namely, w - ), the preimage of this point in < (w - \) )*GrG injects into the variety

(5). The dimension of this variety is a priori < than

<p7_1)/+;\>:<p75‘+[‘_lp>_<p7la—7}+lp/>'
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The non-emptiness condition on (Adw.w0 N((t))  (w-(v— D’))) N Gré implies that
{p, i—0+7") > 0, and the equality is achieved only for 7 — ' = f. VHence, it is suﬂi(zient
to prove that the variety in (5) has dimension equal to (p, —' + ) only for &/ = \.

Note that the condition on A implies that

Ad (ygy-1 (1) - wo(X) € N7[[H]] - wo(H),
where N~[[t]]" is the preimage under N~[[t]] — N~ of [N~ ,N7] C N~. Let ¥q be a
non-degenerate character on N~ ((¢)) with conductor 0. Again, by the condition on A,

A5y (NI]) C ker(W).

—wo

Hence, the required assertion follows from the next result:

Proposition 2.1.5. The intersection

(M(®) - 1) 1 (ker(®0) - Targ ) < (N(@) - ) (N((1) - Larg ) € Gra
has dimension < (p, fi) unless fi = 0.

2.1.6. Proof of Proposition 2.1.5. The assertion of the proposition is equivalent to the
fact that the character Wy is non-trivial on every connected component of the intersec-
tion

(M) - 2) 0 (N7(#) - Targ ).
Let A € AT be a large. Then, then it is well-known that
(N(@) - G+ @) 0 (N(0) - A) = Grg™n(N=((1) - A).
Hence, it is sufficient to show that a character W5 on N~((¢)) with conductor A is

non-constant on every connected component of the intersection Gr)c‘:”l A(N=((t) - N).
But the latter readily follows from the (top cohomology part) of the Casselman-Shalika
formula, [FGV], Sect. 7.1.7.

2.2. The baby Whittaker category.

2.2.1.  Let us denote by I~ the group Ad,,(I°) C G[[t]], and let % : I~ — G, a non-
degenerate character. We introduce the (baby Whittaker) category Perv(Grg)! ¥ as
the that of (I~,)-equivariant perverse sheaves on Grg.

If 8 € Perv(Grg)! ¥ and A € A, both *- and !- restrictions of S|Gré can be non-

zero only if A is regular. Moreover, in this case, these restrictions are supported on the

I~ -orbit of the point wy(A) € Grg.
For A € At we will denote by IC? Gre the Goresky-MacPherson extention of the

(I~ ,1)-character sheaf on the I~-orbit of wy(\ + p') € Grg. It is easy to see that the
IC? GrG’s are the irreducibles of Perv(Grg)! ¥,

4The term ”baby Whittaker” refers to the fact that we are imposing equivariance with respect to
I, rather than with respect to the group ind-scheme N~ ((t)).
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We will denote ICg} Grg Simply by ICw . It is easy to see that ICKGrG is in fact a clean
extension of the correspondlng character sheaf on I~ - w(p'). Indeed, all G[[t]]-orbits

in the closure of GrG correspond to non-regular cowelghts
Using the same argument as in the proof of Theorem 1.3.5, one shows:

Theorem 2.2.2. IC&G *ICS\,GrG ~ IC?GrG.

The same argument as in [FGV], Sect. 6, implies then the following:

Corollary 2.2.3.

(1) The category Perv(Grg)! ¥ is semi-simple and equivalent to Sphy by means of
T 1CE,  *T.

(2) IC;{J’GrG equals both the !- and *-extension of the corresponding character sheaf on
I~ -wo(A+ 7).

2.2.4. Let D(Grg)! ¥ denote the (I~,)-equivariant derived category on Grg. The

forgetful functor Perv(Grg)! ¥ — Perv(Grg) admits natural left and right adjoints,
denoted Av, ;- ,, and Av, ;- ,, respectively.

Proposition 2.2.5. The functors Av - ,[—dim(n)] and Av, ;- ,[dim(n)], when re-

stricted to D(Grg)lo, are isomorphic. Both these functors are exact.

Proof. Note that the character ¢ factors through the map I~ — N~; we will denote by
the same symbol 9 the resulting character of N~. Let ¥~ denote the corresponding
character sheaf on N—.

It is clear that the restrictions of Av, ;- and Av, ;- to D(GrG)G1 are the functors

$ > Y- * S[dim(n)] and 8 - ¥y- x 8] dim(n)],
respectively, where a'< and * are the two convolution functors
D(G) x D(Grg)®" — D(Grg)".
In particular, we have a map of functors

AV!,I*,w[_ dim(n)”D(GrG)Gl - AV*,I*,w[dim(n)]‘D(Grc)cl

To show that the above map of functors is an isomorphism, when restricted further
0 D(Grg) , it is sufficient to prove the corresponding fact for D(Grg)!. °

Let Perv(G/B) “¥ (resp., D(G/B)N %) be the corresponding (N, v)-equivariant
category on GG/B. We will denote by 9/ p its only irreducible, i.e., the clean extension
of the (N, )-character perverse sheaf on N~ - 1¢/p.

For § € D(Grg)! we have:

zﬁNfiS:qu/BiS and ¢N7i8:1/)g/3i8,

A more efficient proof of this fact is given in [BBM]
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but the map

! *
Ya/B*8 — Ygp xS
is an isomorphism, since the convolution map 77 : G[[t]] X Grg — Grg is proper.
I

!
The exactness assertion follows as well, since the functor 8§ — - x 8 is left-exact,

and 8 — Y- * 8 is right-exact.
0

Henceforth, we will denote the functor
AV!,I*,dJ[_ dlm(n)] ’D(GrG)IO ~ AV*’[f’d}[dim(n)] ’D(GrG)IO

simply by Av;- .

2.2.6. Partial integrability. We say that an object of Perv(Grg)!" (resp., Perv(Grg)’,
Perv(Flg)IO, Perv(Flg)!) is partially integrable if it admits a filtration, such that each
subquotient is equivariant with respect to some parahoric, contained in G[[t]], and
strictly containing I. (The latter condition is equivalent to demanding that this sub-
quotient is equivariant with respect to some subminimal parabolic P, C G C G[[t]].)
Let us denote the resulting Serre subcategories by ©ZPerv(Grg)!" (resp., PZPerv(Grg),
PIpery(Flg)!’, P1Perv(Flg)Y).

Note that an irreducible IC, 5 o, . € PeI’V(GI'G)IO is non-partially integrable if and
only if w = wy. Similarly, IC,, ¢/p € Perv(G/B) is partially integrable unless w = 1.

Let /Perv(Grg)!" (resp., fPerv(Grg)!, fPerv(Flg)!", fPerv(Flg)!) be the resulting
quotient abelian category of Perv(Grg)!” (resp., Perv(Grg)!, Perv(Flg)!”, Perv(Flg)?),
and let /D(Grg)!’ (resp., /D(Grg)!, 'D(Flg)"”, /D(Flg)!) be the corresponding quo-
tient triangulated category.

The convolution functor descends to functors

ID(F1e)" x D(Grg)! — ID(CGre)" and /D(Flg)! x D(Grg)' — /D(Gre).

Proposition 2.2.7. The functor
Avi- 4 Perv(Grg)!" — Perv(Grg)! ¥

factors through fPerv(Grg)IO, and the resulting functor fPerv(Grg)IO — Perv(Grg)T ¥
is exact and faithful.

Proof. The fact that Av;- ,, annihilates all partially integrable objects follows from the
observation that the direct image of 1¢/p to any partial flag variety G /P, is zero.

The fact that /Perv(Grg)!” — Perv(Grg)! ¥ is exact follows from the exactness
statement of Proposition 2.2.5. To show that it is faithful, it is enough to prove the
corresponding fact for FPerv(Grg)!. We argue as follows:

Let Av, o : D(Grg) — D(Gre)! (resp., D(G/B) — D(G/B)N) be the functor, left
adjoint to the tautological embedding. Let us denote by = the object

(6) E = Avy o[~ dim(n)]($g/5) € D(G/B)Y.
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We have, tautologically:

Lemma 2.2.8. The composition

Av,_ _ Av, ;o[- dim(n)]
Perv(Grg)!  —=" Perv(Grg)! ¥ — Perv(Grg) i Perv(GrG)IO
s 1isomorphic to the convolution functor
F—ExTF.

It is known that = is the longest indecomposable projective in Perv(G/B)", and it
admits two filtrations: one whose subquotients are the standard objects ji,,, w € W,
and another, whose subquotients are the costandard objects j ..

Note, however, that the arrows ji ., — j«1 and ji1 — ji,, become isomorphisms on
TPerv(G/B)E c fPerv(Flg)!. Hence, the image of = in /Perv(G/B)" is isomorphic to
the extension of [W|-many copies of 6, /5. Hence, the convolution with Z, viewed as
a functor fPerv(Grg)! — /Perv(Grg)!", is faithful.

O

Remark. One can strengthen Proposition 2.2.7 and prove the following more precise
assertion:

Let h° be the algebra of functions on the scheme-theoretic preimage of 0 under
h* — b*/W. It is known that hg is isomorphic to the algebra of endomorphisms of E.

For an abelian category € we will denote by € ® h¥ the category of objects of €,
endowed with an action of h°.

Then the category fPerv(Grg)!" is equivalent to Perv(Grg)!™ ¥ @ h0 ~ Sphg ® RY.

2.3. Cosocles of costandard objects.
2.3.1. In this subsection we will prove the following assertion:

Proposition 2.3.2.

(1) For a regular dominant element A\ € A, the cosocle of WA € Perv(Grg)! is simple

and is isomorphic to ICwO,j\ Gre

(2) The kernel of WA - 1IC 1s partially integrable.

wo-A,Gra

Proof. First, we claim that if we have a surjection from W*A to an irreducible S, then
this 8§ must be non-partially integrable. Suppose the contrary, and let « € J be such that
8 is equivariant with respect to the corresponding sub-minimal parahoric. Then the
convolution ji 5, x8 lives in the cohomological degree +1. However, js“;*W*’A ~ WHsA
is still perverse. Hence, Homp g, ) (Jsut * W*”V\,jhsl * 8) = 0, which is a contradiction,
since the convolution with j, , is an auto-equivalence of D(Grg)!.

To finish the proof of the proposition, it suffices to show that IC is the only

wo-\,Gra .
non-partially integrable irreducible that appears in the Jordan-Hélder series of W**.
Since the natural map

SO o T
W* ~ ]*7>\ *51,GI"G — ]!71110 *]*7)\ *51,Grg ~ W* wo
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becomes an isomorphism in fPerv(Grg)!, by Proposition 2.2.7, it suffices to show that
the map
Avi- y(WHw0d) — Ay, (ICw0AGre)
is an isomorphism. )
By Proposition 2.2.5, it would be sufficient to show that AVFJ/,(W*’“’O')‘) is an irre-
ducible object of Perv(Grg)! . However, evidently,

AV, 1 (W0 ) [dim(n)]

is the *-extension of the corresponding character sheaf on I~ - X. Hence, we are done
by Theorem 2.2.2(2).
O

2.3.3.  We will now prove the following:

Proposition 2.3.4. If A\ € AT is large, the object WX qdmits IC}\—zp,GrG as a
quotient.

The rest of this subsection is devoted to the proof of this result. Let Av, g/ be

the functor Perv(Grg)! — Perv(Grg)¢l ~ Sphy left adjoint to the forgetful func-
tor Perv(Grg)®Ml — Perv(Grg)!. Note that since G[[t]]/I = G/B is compact, the
corresponding right adjoint Av, qy/r is isomorphic to Avy gry/7[2 dim(n)].

For a regular A € AT, let us denote by emb,):Gr G,embi’GrG

D(G/B) — D(Grg), along with its I- and I°-equivariant versions. Evidently, these
functors commute with Avy g7 in the natural sense. Therefore,

the natural functors

(7) Avy G (W) = emb? g, (Cay (2 dim(n)).

* Grg

In particular, we obtain that the object embiGr ICq/p) lives in the cohomological

degrees < dim(n). Therefore, Homperv(GrG)J(W*’wO'A,IC;\_%GrG) identifies with
Hompery (Grg) st (hdim(n) <embi,GrG (ICG/B)) ) IC;\—zp,GrG> :

Thus, we have to show that the top=dim(n)-degree cohomology of embiGr -IC¢q/B)
has a quotient (or, which in this case is the same, a direct summand) isomorphic to
IC;\_2pv7GrG. Set IEL = )\ - 2p.

Consider the cohomology

H, (N((t)) ~wo (i), emb!):GrG(ICG/B)‘N((t))-wO(;l’))7

where, as usual, we regard N((t)) - wo(jz) as a sub-indscheme in Grg. By [MV] (and
duality) it would suffice to show that the above cohomology in degree — dim(n)—(2p, ')
is 1-dimensional if i’ = i, and is 0 for i < @’ < \.

By base change, the above cohomology can be rewritten as

HEPA=m0) (N (1)) - wo(i)) 1 Grs, C).
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Since A was assumed large, the intersection (N ((t)) - wo(f')) N Gré‘; equals

(N((#)) - wo(i)) N (NT((1) - wo(N))) = (N((F)) - Larg) N (NT((})) - wo(A = i')))-
Hence, our assertion follows from Corollary 4.3.8.
Corollary 2.3.5. For A\ large the map WA ICwo-XGrG lifts to a map WA
WLwO.p * IC}\—pI,Grc'
Proof. The existence of the map in question is equivalent, by adjunction, to the exis-

tence of a Map J. w.(—wo () * WA IC5_ 5 Gr- Note that —wo(p') = 2p—p'. Hence,
the assertion follows from the above proposition, since:

] *75‘ ~ 7 ) . ~ 1 . ~ *75‘+2p_/3l
]*,wo~(2p“—;3’) *W — ]*,w0~(2p—p’) *]*,)\ * 51,Grg - J*ywo-()\-l-?ﬁ—f)’) * 51,Grg ~W .
]

3. A STUDY OF BABY VERMA AND CO-VERMA MODULES

3.1. Baby co-Verma modules via Ujy.

3.1.1. Let M* be the object of Hecke(Uy, G’), corresponding to M?. Our present goal

is to describe it explicitly. First, we will describe M* as an object of U;-mod. By
definition, M* = @ Mﬁ, where each Mf) is given by
feA
IndY¢(C~* @ M) ~ IndV¢ (M=),

Uy Uy

Hence, it sufficient to describe the modules of the form IndY*(M?).
U

By construction,

nd¥ (M) = ndY (C),

U b,
which, in turn, is isomorphic to
(8) mdY (md? (C*)) ~md¥ (C* @ mdl (C)).
B, b B, b

By Proposition 1.1.14, Ind?z (C) ~ FI'Bf(OBf/T).
b,

Proposition-Construction 3.1.2. As a B~ -module, OB*/T s isomorphic to the di-

rect limit

lim Resg, <(V)‘)*) ® [5‘,
AEAT

A denotes highest weight line of Vj‘, regarded as a 1-dimensional representation of T

(and, hence, also of B~ ).
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Proof. By adjunction, to specify a map of B~-modules

(9) Resg, <(V)‘)*) i OB*/T’

is equivalent to giving a map (KS‘)* — ([5‘)“*, compatible with the T-action. The latter
corresponds to the natural embedding of [* into V.

~ To define the inductive system, we choose a compatible system of isomorphisms
P @ I# ~ £, Such a system fixes as the maps V* ® V# — V A/ (which are otherwise
defined up to a scalar).

Suppose that i € At is another dominant weight of G. We define the map

Resgf <(V)‘)*) 1 - Resgf <(V5‘+ﬂ)*> & (M

as the composition
(10) Resg, ((VA)*> 1 - Resg, <(V5‘ ® Vﬂ)*> e Resg, ((V;\+p)*) ® [;\+ﬁ,
where the first arrow comes from the map of B~-modules ([#)* — Resg, ((Vﬂ)*), and

the second arrow comes from the map (VA ® VA)* — (VA+#)*. These maps define the
inductive system stated in the Proposition-Construction.

By construction, the map of (10) is compatible with the maps of (9) for A and j.
Hence, the resulting inductive limit maps to Op- /T The fact that this map is an
isomorphism is an easy verification.

d
3.1.3.  ;From the above Proposition we obtain the following description of M3:
Corollary 3.1.4. Choose a trivialization of the T-torsor given by {[5‘}. Then
M2 =~ lim Fr((Vj‘)*) ® WhHer(d=7)
AeA+

where the maps in the inductive system are given by

FI'(VS\)* Q W>\+¢[(5\—I)) BN FI'(VS\)* ® FI‘(Vﬂ)* ® W)\+¢e(5\+ﬂ—l)) N

Fr(vj\-i-/l)* ® W)\-i-(be(j\'f‘/l_’))’
where the first arrow comes from the canonical map

(VA ® WA (A=1) _ yWA+de(A+i—1)
3.1.5. Hecke property. Let us now describe how the Hecke isomorphisms
Fr(V)eMy — & My, ®V(D)
veEAT

look like in terms of the identification of Corollary 3.1.4.

For a coweight A € AT, large with respect to the weights of V', we have a canonical
isomorphism of G-modules

VeVt~ oV oV ().
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Hence, we obtain a map of B~-modules

VooV e (VA eV () » (V) e M o V().
Applying the functor Indg‘i , for A € AT, we obtain a map in Uy -mod:
4

FI‘(V) ® WA @ FI‘((VX)*> Q WA+¢Z(5\+D) ® K(D)

[ ]
Proposition 3.1.6. The Hecke morphisms for M are equal in terms of the inductive
system to

Fr(V) @ Fr((V;\')*> o WA =)
® Fr((Vj‘,)* ® (VX)*) ® WO N —it0) o ()
® Fr((Vj‘J’j‘/)*) @ WSO —jit) o V().

Proof. By the construction of the isomorphism in Corollary 3.1.4, it suffices to show
that the isomorphism

Res, (V) ® Op- q — © 057 © V()

looks in terms of the identification given by Proposition-Construction 3.1.2 as a system
of morphisms

Resé (V) ® (VX')*) o - ® Res <(VX')* ® (VX)*) ® PN @ V() -
. E,? Resg, ((V}\Jr}\')*) & PN+ V().
The latter is a straightforward verification.
O
3.1.7. Baby co-Verma as a quotient. Let us briefly discuss another realization of ]\.4 A

L]
(or, equivalently, MA) in terms of the big quantum group.

For an element i € A*, let K‘:‘ be the hyperplane in V# orthogonal to [7# C (V#)*.
This subspace is preserved by B™, and in particular, it admits a well-defined weight

decomposition with respect to T
For A € At consider the canonical map of Uy-modules: Fr(V#) @ W* — WA+e:(#)

After the restriction to L.lg, it gives rise to a map
& C” ® ResY ! (W) ® V() — ResP ¢ (WAHoe(),
U Uy Uy
For A € At consider the canonical map ResT¢(WA+oe(w)) — ppA+ee(n)
g
Proposition 3.1.8. The composition

& C” @ ResV* (W) ® Qp(z)) — ResP ¢ (WA Mo
1 Uy u,

L
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vanishes. For a fited A and all sufficiently large i the complex

(11) 8aC’® ResV* (WA+¢Z(5\)) ) {}M(,;) —s ResY* (WA+¢5([L+5\)) - ]\.4>\+¢>z(u+5\) =0
U Uy Uy

is exact for all sufficiently dominant X.

Proof. The first assertion of the proposition is evident. To prove the second one we

proceed as follows. Let C;_ be the sky-scraper coherent sheaf at the point B~ in the

flag variety G/B~. It admits a left resolution of the form

0 = Paim@/B)+1 — Pdim(@/B-) — Pdim(@/B-)—1 — - — Y1 = Po = Cp =0,
where Py ~ O/ p-» and the sheaves P, for i = 1,...,dim(G/B™) are isomorphic to
O(—j1;) ® Vi for ju; € A*; V' are some vector spaces. Moreover, the weight ji; may be

chosen arbitrarily large; and the vector space Vlv surjects by construction onto V1.
By pulling back this complex from G /B~ to G, it gives rise to a complex

P — CFam@/57) @ Res§_ (Rg) @ VAMGE/BT) | €7 @ ResG_(Re) @ Vi — ...
Y O Resg, (Rg) @ V! — Resg, (Rz) — Rp- — 0
of B~-modules, where R ;- denotes the regular representation of B~. By construction,

gT(G/Bi)H(RB,,P) vanishes. ]
Let us tensor this complex with the B, -module CM ol +2)  where A is such that
all the weights of the form X\ + ¢y(fi1 + A — fi;) become dominant. Then,
i 1, U Ao (M-fin —fi; G ~
R'Ind;° (C +oeOtin—fii) ®Q Fr- (ReSB,(RG))> ~

L

the arising element in Ext

~ Fr(Rg) @ R'Ind3" (C“W(”ﬂl"li)) =0
4
for ¢ > 0.

Hence, we obtain that the sequence of Uy-modules

Fr(Ry) QW) gy Fr(Rg) @ WA +3) _, Indg‘i (C>\+¢z(ﬂ1+5\) ®Rpz-) —0

L

is exact. However, the above sequence of maps is obtained from (11) for g = fi; by
applying the functor Ind%¢ o Resy!, which is exact and faithful.

Ug

O
3.1.9. The case of twisted baby co-Verma modules. For w € W let F,,,w, ws be as in
Sect. 1.1.15. ;From Sect. 1.2.5 we obtain the following description of the object wl\./Iw()‘)
of the category |:|ecke(Ug, G), corresponding to “’]\.4“’(’\):

Corollary 3.1.10. As an object of Uy-mod, wng()‘) 18 isomorphic to Mi\u(g)' The
Hecke property morphisms

Fr(V) @ *MYY — oMy o v (v)

v
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L]
are obtained from those of Mi\v(ﬁ) by applying the element we = V(v) — V(w(v)).

In addition, we have an analogue of Proposition 3.1.8. Let “V# be the subspace of

~ o ~
V# obtained by translating V* by means of w.

Corollary 3.1.11. We have a complex
aC? g Respl (WA+¢Z(5\)) Q wyo/ﬂ(p) N ReSP—Z (WA+¢Z([1+5\)) N wa()\—‘,-(;ﬁg(u—i-}\)) —0,
1 uy - Uy

which is exact when for a fized X\, the coweights [i and X are large enough.

3.1.12. The non-graded version. For A € A recall that M?* denotes the restriction of

M to u, (thevsmall, non-graded quantum group). Let M* be the corresponding object
of Hecke(Uy,, G). From Corollary 3.1.4 and we obtain a description of M* as an object
of Uy-mod. Namely,

(12) M* ~ & lim Fr((Vj‘)*) © WAToe )+ ()
" senr
The Hecke isomorphisms for M* are given by disregarding the grading in the iso-
morphisms for 1\./1)‘, given by Proposition 3.1.6.

In addition, we can realize M* as a quotient of modules, restricted from Uy, using
Proposition 3.1.8:

Uy Uy

(13) M? ~ coker <Res?‘ (WHW(}‘)) ® Qﬂ s ResY’ (W)\+¢e(ﬂ+5\))> _

3.1.13. G-action on baby co-Verma modules. By Sect. 1.2.5, to any g € G we can at-
tach a module &M A € up-mod. Explicitly, 8M* corresponds to the object 8M* €
Hecke(Uy,, G), where the latter is obtained from M?* by modifying the Hecke isomor-
phism using g acting on V for V € G -mod. Equivalently, 8M* can be realized as
(14) coker <Res?‘Z (W/\J”z"(j‘)) ® gi’l — Res?‘ (W’\H"(’H;\))) )
Uy Uy

where 8V# is the g-translate of V# inside VE § §

By Sect. 1.2.5 if g belongs to the normalizer of the torus T C G, 8M? is isomorphic

to Resiﬁ (WM XN) for the corresponding w € W.

Proposition 3.1.14. If g € B~, then 8M” is isomorphic to M*. For A = 0 the above
condition is ”if and only if”.

Proof. The description of 8M* given by (14) makes it clear that if g € B~, then
g8M* ~ M?*. To show the inclusion in the opposite direction we argue as follows:

It is easy to see that the subset of elements of G, which stabilize the isomorphism
class of M* is a Zariski-closed subgroup of G. Hence, we must show that this subgroup
does not contain any parabolic strictly containing B~. Therefore, it is enough to show
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that the none of the modules Resﬁﬁ (“’]\.4 9) for w # 1 is isomorphic to M°. This is
equivalent to ]\.4 0 being non-isomorphic to “’]\.4 ) for pe N, 1#4weW.

Note that the socle of “’]\.4 ¢(#) is isomorphic to C?(#). Hence, if “’]\.4 Pe(ft) ~ ]\.4 0,
then §i = 0. However, it is clear that w]\.4 0 is non-isomorphic to ]\.4 0 because, for
example, —¢;(2p) + 2p, which appears as a weight of ]\.4 0. is not among the weights of
w MO,

O

One can show that the condition of the proposition is in fact ”if and only if” for any
A belonging to the regular block. This is because, as we shall see later, baby co-Verma
modules with the same w, but different parameters A, can be obtained from one another
by (invertible) convolution functors.

3.2. Baby co-Verma modules via perverse sheaves on the affine Grassman-
nian.

3.2.1. For an element w € Wy ¢, let A € A be the corresponding weight in the regular
block. That is, if w = w- A, then \ = (bg( ) +w™(p) — p.

Let M“’ = EBM“’ be the object of Hecke(Grg,G) I corresponding to the object

M* € Hecke(Ug, G). By Corollary 3.1.4, as an object of Perv(Grg)IO,

(15) My o= lim WO L IC 5 g -
NeA+

The maps in this inductive system come from the canonical maps
*7w'Vl ~ 1 < y *5‘/ ~
W *ICXCGrG ™ Jaweii! *ICA’,GrG — Juwp * W
. : " s o W (1A
T w1 * s N * 51,GrG =J. wv(ﬂ’—l—j\’) * 51,GrG ~W (7 )

The Hecke morphisms Mw *V — EBV( ) ® M“’ ; for V€ G-mod, are given by

translating the morphisms of Prop051t10n 3.1.6 into the geometric context. Namely, let
X be a weight large, compared to V. Then the sought-for morphism is

wrw (N=p) IC—wO(X'),GrG *V —

W) i (165 5 #9) * (TC_ 30,06 *1C (300 ) =

W (V=) (%9 V() ®1C; +D7Grc> * (1C_ 3.6 *1C gy ) —
9 V() @ WO (1000606 % 1C i e )

@ V(I;) ® W*,w(jx-i-j\’_ﬂ-i-f/) * IC—wo(X—I—}\’),GrG X
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Evidently, if @ = w - X is such that for some w’ € W, l(v') + l(w) = (v - w), we
have

(16) o * M M
that it, the objects J\/[f’~J for different w are obtained from one-another by convolution.
Note also that for A, i € A with i dominant and A dominant and regular,
Ww-f-w™) +1(w- ) =1(w-(i+N)).
Hence, we obtain:

Corollary 3.2.2. For ji € At there are canonical isomorphisms

[ ] - [ ] v . [ ] ~
Juogi % M 2 MO = M=},
respecting the Hecke isomorphisms.

Assume now that w € W, A, i € A are such that w - (X + ji) is right W-minimal, i.e.
W@ (A+8) is well-defined. By (15), we have a map

(17) W () g

j*,w*lvﬁ’vw . -
(N .
WHW (A+pa+a") Mw-A ~/

commutes.
Convolving (17) on the right with IC,/ ¢y, we obtain the map

W D) L TC ey, — MU % IC Grgy = ® V() @ MY
The above description of the Hecke morphisms implies also the following:

Corollary 3.2.3.
(1) The diagram
W*,w.(j\-‘rﬂ) * ICﬂ/ Gr W*,w~(ﬂ+[/+5\)

! !

@vﬂ(zy)@w_@_ﬂ — MY

commutes, where the bottom horizontal arrow is the projection on the direct summand,
corresponding to v = ji’.

(2) The object M € Hecke(Grg, G)IO 18 universal with respect to the properties that
(a) it satisfies Corollary 3.2.2, (b) it receives a map as in (17) for some fi, such that
(a) and (b) render the above diagram is commutative.
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If we put w = 1 and i = —\, the map in (17) identifies with
o .
b
(18) 51,GI‘G — M_}\
e .
Thus, we obtain a characterization of M? in terms of 01,Grg -

- ~ o ~
Finally, we note that the normalizer of the torus 7' C G acts on Hecke(G‘rrg,G)I0
by self-equivalences, modifying the Hecke morphisms. The functors, corresponding to
elements of T are (non- canomcally) isomorphic to identity. For w € W we will denote

by wa the obJect of Hecke(Grg, aH! I” obtain in this way from M“ﬂ it corresponds to
the object “’M“’()‘) € ng -mod.

3.2.4. We will now list several facts about the objects M?, most of which are formal

L]
consequences of the corresponding properties of M?, but we will give geometric proofs
for completeness. §
Let w = w - i be an element of Wysr, and let A be such that L% ~ ICw-S\,Grgv in

particular, w - \ is restricted. Then we have:
Proposition 3.2.5. The socle of M? is isomorphic to L x Ra{\ — ji}.

Proof. By Sect. 1.3.8, every irreducible in Hecke(Grg, G)!" is of the form £*’ *Re{ '}
for some w’ € W and i’ € A. Suppose that such an irreducible maps to M*#. By
adjunction, this means that we have a map

LY — W*,w-(ﬂ’+ﬁ+ﬂ’) * Ic—wo(jx’) Grg

in Perv(Grg)!" for some X € AT
The latter can be rewritten as an element in
HOIH(LU)/ *ch\/ W*,W'(X-l-ﬂ'i‘ﬁ,))‘

,GI‘G ’
By Theorem 1.3.5, and taking into account that the socle of Wrw (N +i+i') g isomorphic
t0 IC,, (x4 jitjir),Grg» this implies w =wand i =\ — [i.

We also obtain that the above Hom is 1-dimensional. ILe., L% x Rs{\ — ji} is the

L4 ~
only irreducible that can map to MY, and it appears in the socle with multiplicity 1.

O
Proposition 3.2.6.

(1) The object M* € Hecke(Grg, G)! is finitely generated. © Its cosocle is isomorphic to

LW x Re{p'}. Moreover, all the constituents in ker(M* — L% x Rs{p'}) are partially
integrable.

(2) There exists a surjection M™° — R={2p}.

L]
6Here and in the sequel, the superscript ”1” in M' stands for the unit element in W, ff-
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Using (16), from point (1) of the proposition we obtain:

Corollary 3.2.7. Every M? is finitely generated (as an object of Hecke(Grg, G)T).

Before giving the proof of the proposition, we need to introduce the following con-
struction. Consider a A-graded object of Perv(Grg)’ ’ given by

[ ]
! .
‘(RG T % lﬁ? IC}\—P,GYG*IC—U)O(S\),GTG’
AeA+
where the maps in the inductive system are given as follows. If N = A+, 7 € AT,

IC}\—[L,GI‘G *IC—wo(S\),GrG - <ICS\—[L,GI‘G *ICD,GTG) * <IC—WO(D)7GYG *Ic—wo(jx),Grg) -

ICS\—/E-H?,GrG *Ic—w0(9+5\)7GrG :

[ ]
Proposition-Construction 3.2.8. The object Rz’ is a Hecke eigen-sheaf, and as
L]
such, it is canonically isomorphic to Rp.

Proof. Since all the appearing perverse sheaves are spherical, we can work in the tensor
category of Rep(G) instead of Perv(Grg)! °. The Hecke morphisms are given as follows.
Let A € A™ be large compared to V. Then the sought-for map is the composition:

VeV g Vi) s Ve Ve Vi e (VA)* e (VM) -
@ (VX/_[L ® VX-‘,-I)) ® ((VX’)* ® (Vj\)*) ®K(V) _ @ij-l-)\’-i-li—/l ® (VX-FIJ)* ®K(V)

14
To see that R’ is isomorphic to R, it is enough to notice that
Hom (V, lim VA (V")*) ~ lim Hom(V ® VA, Vj‘_‘l).
AeA+

When A is large with respect to V, the latter inductive system stabilizes to (V)*(j1).
]

Now we are ready to prove Proposition 3.2.6.

L]
Proof. First, we claim that M! cannot map to any partially integrable object of the
. . .
category Hecke(Grg, G)! ° Indeed, if § were partially integrable and we had a non-zero
[ ] [ ]

map M! — 8§, we would have a non-zero map in Perv(Grg)!:
WA % ICs e — 8
for some A, i € At and 8’ € P/Perv(Grg)!. By adjunction we would then have a map

WA — 8 % IC_ o (a).Grg = 8,

with 8” being also partially integrable. But the latter is impossible by Proposi-
tion 2.3.2(1).
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Let us now construct a map M! — L% xR~{p'}. According to Proposition 2.3.2(1)
and Theorem 1.3.5, for every dominant and regular A we have a canonical map

A ~ y
W N Icw()~5\ ~ :[Cw()ﬁ’ *ICA—ﬁ’,GrG .

In addition, for i € AT the diagram

WA 5 IC; Gre, — WAt

l |

ICwO.p/ *(ICX—p“’,GrG *IC%GrG) E— ICwO.pv *IC;\+/1_p~/7GrG

is easily seen to commute.
This defines the map of between the inductive systems:

1 ; s, A— 1 . : . .
Mﬂ ~ lﬂnw P % IC—wo()\),GI‘G — lﬂl LW0 % (IC)\—[L—ﬁ’ *IC—U)O(A),GI'G)’
A A

[ ]
and the latter identifies with L0 x Rz{p'}, by Proposition-Construction 3.2.8.
It is straightforward to check that the above map respects the Hecke morphisms, i.e.,

we obtained the desired map in Hecke(Grg, G)!". Moreover, from Proposition 2.3.2(2)
it follows that the kernel of the map M! — L0 x R5{p'} is partially integrable.

To finish the proof of the first part of the proposition, it remains to show that the
map

(19) WA« R {A} — M
is surjective for some (and, in fact, every) regular A. By construction, the composition
WA % Ra{A} — M — L0 % R {5}

is surjective. Hence, by the above, the cokernel of (19) is partially integrable, and
hence, is zero.

To prove the second assertion of the proposition, recall from Proposition 2.3.4 that
for A large we have a map

(20) W*ﬂUO‘j\ N ICX_sz,

defined up to a scalar. Moreover, from the construction of this map one deduces that
the square

W*’wO.A*IC[L,GrG . WHrwo (A+f)

l l

IG5 o5 *IChare — 105 im25.are

commutes (up to a scalar). We can normalize the maps in (20) to make such diagrams
commutative.
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This gives us a map of inductive systems

A—ji—2p

Y w . *,W0" Py .
Mﬂo ~ lﬁllw 0:(A=f) * IC—wo(X),GrG — lﬁll 1C5 *Ic—wo(j\),Grg’

X A

and the latter identifies with R={2p}.
O

3.2.9. A dual description. Recall that over the small quantum group, the baby Verma
modules can be expressed through the baby co-Verma modules and a twist by elements
of the Weyl group. We would like to establish this fact geometrically as well. By (16),

[ ]
it suffices to consider the case of just M.

Proposition 3.2.10. We have an isomorphism
D(NE) = (M) {27).
Since the convolution functors commute with Verdier duality, from (16),we obtain:

Corollary 3.2.11.
]D(j\./[w'ﬂ) ~ w0 wo (wo()+275)

Combining this with Proposition 3.2.5, we also obtain:

Corollary 3.2.12. The cosocle of every MY *# is simple and isomorphic to

1Cyy .5 g *Re{wo (V) — o + 27},
where A\ € At is such that w - wq - \ is restricted.

Proof. By Proposition 3.2.6(1) and Proposition 3.2.5, it is enough to construct a map

(21) M - D ((UJOJ%WO){%}) :
such that the composition
(22 R — 3 -0 (e 29))

equals (up to a scalar) the map, obtained by duality from Proposition 3.2.6(2), and
such that the composition

(23) N D ((woﬁtw){zp}) L) R

equals the map of Proposition 3.2.6(1).
By Corollary 3.2.2 and duality

oy +D (4030 (293 ) 2 (0507) 26} ) {un()}
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Hence, by Corollary 3.2.3, to construct a map as in (21), we must construct a map

Ry — D <(“’0M“’0){2p}> and check the commutativity of the corresponding diagram.

By duality, the above amounts to a map (“°M"°){2p} — Rx. By the definition of the
twisting functors, the existence of the latter map follows from Proposition 3.2.6(2). We
need to check the commutativity of the following diagram:

ez} = e () —— R

| l

VAN 2) @ (M) {2p + ) —— (WM 0) {25} % 1C5 g, —— R *1C5 1y,

1%
Recalling the definition of the arrows, we arrive to the following diagram, defined for
i large: )
j!75\ * WHwofe .7‘!,5\ * ICﬂ—2ﬁ,GrG

’ (p 5\ _ — «
W (o () Icﬂ+wo()\)—2ﬁ7GrG’
where the right vertical arrow is the composition

Iia*1Ca—2p.Gre = 105 gp, *ICu-25,Gr6 = 1C; (%) —25,Gr
where the second arrow is obtained by adjunction from

IC:—25,arc = 1C_y (%),6re * LCotwo(3)—26,Gre -

The commutativity of the latter diagram follows from the construction of the arrow in
Proposition 2.3.4.

By construction, the condition on the composed map from (22) is satisfied. It remains
to verify the condition in (23). The latter amounts to showing that the arrow

IC

wo-Gitawo (), Grg — WO WO o iy e WHROR i % 1C25,Grg
equals (up to a scalar) the map

ICwO,( X =~ ICwo-ﬁ’,GrG *1C

ftwo(A)),Grg — fitwo(N)—p/,.Grg

[Cupp,Gre * <ICx_,y,GrG *ICu—zp,GrG> ~ 1C 5 Gre *1Cn-25,Gre — Iy 5 * 1C-2p,Gra

where the last arrow comes by duality from Proposition 2.3.2, and the second arrow is
obtained by adjunction from

1Cstwo )~ Gre * TCwo () tuo (). Gre. — 1CR-25.Grc -

By construction, both these maps are non-zero. Now our assertion follows from
the fact, that IC,, 3.Grg 18 the only non-partially integrable constituent of W"*, which
implies that ICwO. (i4wo(3)),Gr APPears with multiplicity one in the Jordan-Hélder series
of j!75\ * ICﬂ—2ﬁ,Grg-

d
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3.2.13. Non-graded version and presentation as a quotient. Our present goal is to prove

[ ]
geometrically that M¥ can be presented as a quotient, as in Sect. 3.1.7. For that it will
be convenient to consider the corresponding non-graded version, M? € Hecke(Grg, G)I .
If 0 =w-\and @ = w- N, then, evidently, M? ~ M?.
For g € G we will denote by 8M? the corresponding twist of M?; forg=w € W

we recover the objects YM¥. We will denote by “M®¥ the universal family of 8M? over
O
Lemma 3.2.14. i §
(1) As an object of Perv(Grg)!, M¥ admits a unique action of the algebraic group B,
such that

o Ifw =w-\, in terms of (15), the image of WeAA in M® transforms according

to the B~ -character —\ .
e The Hecke isomorphisms

Mﬂ’*\?:z(@Mﬂ’

intertwine the action of B~ on the left-hand side, obtained by transport of struc-
ture and the diagonal action of B~ on the right-hand side.

(2)
Hom (C “®Resv (V’\'),J\/[f”) ZWw'(Hm*IC—wo(ﬂ’)

,Grg?
if w- (A4 1) € Wayy is right W-minimal, and 0 otherwise.

Note that the action of T'C B~ on M? as an object of Perv(Grg)! comes from the
grading on M?.

The first assertion of the lemma means that, as an object of Hecke(Grg, G’)I , M? s

B~ -equivariant, i.e., that the Ox- family Gy acquires a B~ -action, covering that on
Og. Alternatively, a structure of a B~ -equivariant object on some N € Hecke(Grg, G)I
is a B™-action on N as an object of Perv(Grg)!, which is compatible with the Hecke
morphisms in the natural sense.

Let us denote this category by Hecke(Grg, G)é
Hecke(Grg, G)é of G-equivariant objects of Hecke(Grg, G)'; it is canonically equivalent
to m((}rg)].

Let us consider also the category

Let us now recall the following general construction. Let N be a an object of
Hecke(Grg, G)%f. We claim that it gives rise to a functor

QCoh(G/B™) — Hecke(Grg, G).
Indeed, given X € QCoh(G/B™), which we will view as a B~ -equivariant Og-module,
consider the tensor product KX ® “N. This is an object of Hecke(Grg, G)!, endowed
e

with an action of B~, and we set

KN = (i]{gz) N)
G
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The underlying object of Perv(Grg)! is given by <3< ® N)B -

Suppose now that X is an object of QCoh(G/B~)s. Then, by construction X x N
belongs to Hecke(Gra, G)% = Perv(Grg)".

Lemma 3.2.15. The functor N +— O - * N : Hecke(Grg, GV)%7 — Perv(Grg)! is the
right adjoint of the forgetful functor

—Perv(GrG)I ~ Hecke(Graaé)é - Hecke(GrG,Gv)%,.

Note that the functor N — O¢ - * N : Hecke(Grg,G)Ij? — Perv(Grg)! can be
tautologically rewritten as N — NB™. The following is a translation of the Borel-Bott-
WEeil theorem:

Proposition 3.2.16. Assume that w is right W-minimal. Then OG/B* * MY ~ W
and fori > 0

R (B—, Mw> —0.
Proof. The first assertion of the proposition is immediate from Lemma 3.2.14(2). To
prove the second assertion, note that if N is any Artinian B~ -equivariant object of
Hecke(Grg,G)I, there exists 1 € A1 large enough, so that R’ (B‘,Cﬂ ® N) = 0 for

i > 0. This follows from the fact that the functor of derived B~ -invariants has a finite

cohomological dimension, and any Artinian object of Hecke(Grg, G’)%f, admits a left

resolution, whose terms are of the form Fx Rz ® U, where F € Perv(Grg)!, and U is a
finite-dimensional representation of B™.
Hence, for a given w € W and X' € A" large enough,

RInv(B~, M“"j‘,) ~ WX
Note that the functor RInv(B~,-) : D(Hecke(Grg,é)I;) — D(Grg)! commutes

with the action of D(Flg)! by convolutions. It suffices to remark that if X' — A\ € At
then MwA ~ T - (i1 % Mw N , and if w - \ is right W-minimal, then also W' A~

I (Geiryaw—1 * WY X,
g

Corollary 3.2.17. Let w € Wy be right maximal with respect to W. Then for
i # dim(n), HY(B~,M%) =0, and

Fdim(n) (B, M) ~ Whiwo,
Proof. Let w = w - A, and let & € At be such that w - (\ + 1) is left minimal with
respect to W. Then:
H*(B™, M%) = iyt * HY(BT, MO ) G x Wi i),
The latter is isomorphic to
i D1, = W[ dim(w)].
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Let now ... — P1 — Py — C;_ be a left resolution of the skyscraper on G/B~, as
in Sect. 3.1.7, where each P; has the form O(—/i;) ® U?, where U* are vector spaces.

Let @ be w - . Tensoring by the line bundle (‘)(5\’ ), we can ensure that AN — fi;
are such that w - (A + N — ;) is right W-minimal for ¢ = 0, ..., dim(n). We obtain that
the complex

(fPl ® (9(5\’)) « M (?0 ® O(X’)) £ MP = Cpo + MP = 0
is exact. However, Cp_ * M?P ~ M? and
O(f1) % MW o Wrew (i+A)

by Proposition 3.2.16, provided that w - (&1 + 5\) is right W-minimal. Thus, we arrive
to the same conclusion as in Proposition 3.1.8.

3.2.18. Hereditary property. In this subsection we will prove the following:

i
Theorem 3.2.19. ExtHecke(Grg,G)IO (D(

and Hom(D(M?®), M®") is zero if w # @', and 1-dimensional otherwise.

MDY, M?) = 0 fori > 0 and any 0,0 € Wast,

This theorem follows immediately from Theorem 1.3.9 due to the corresponding
property of baby co-Verma modules over the small quantum group. Here we will
discuss a geometric proof of this fact, which the rest of this subsection is devoted to.

In the course of the proof we will introduce another important object—the Wakimoto
sheaf.
Let HeCke(GrG,é)IBO be the category of B-equivariant objects in Hecke(Grg, G)!".
By Proposition 3.2.10, D(M®) is naturally an object of Hecke(Grg, G)g
For 1 = w - i consider the following object Wak® of Hecke(Grg, G‘)g . It is defined
as

Lim W PHR) 5 R (0},
vEA
where the maps in the inductive system, defined for i/ — 7 = XA € A*, are given by
W*,w.(ﬂ-ﬂl) *:RG'{D} N W*,w.(ﬂ—i-ﬂ) *:RG’{D + 5\} ® Kj\(j\) _
— W () A fRé{I) + 5\} — W (FHEA) fRG{D + 5\}

Note that the forgetful functor Hecke(Grg, G‘)g — Hecke(Grg, G)! * admits a natural

right adjoint given by N — 05 ® GN. Similarly, the functor Hecke(Grg,é)g —
O¢
Hecke(Grg, G)IO admits a right adjoint N — Oy ® oN.
O¢

Lemma 3.2.20.

Wak® ~ 0 ® G (M®).
G
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Hence, we obtain

Emtﬁecke(Grg,é)IO(D(M ), M ):ExtHecke(GrG,é)g)(D(M ), Wak™").

By the Artinian property and taking into account Corollary 3.2.11, to prove Theo-
rem 3.2.19, it is sufficient to show that

i w w- 1 w' - (A1 bt
(24) ExtHecke(GrG,@)g)( oM B WA S R {A}) = 0,

unless i = 0, w’ = w - wg and i’ = wo(f1) + 2p, whenever A is deep in AT.

Lemma 3.2.21. For N € Hecke(Grg,é)g and F € Hecke(Grg,G')IO,

RHom 0 (N,F % Rx) >~ RHom

Hecke(Grc,G) s RCoinv(B,N), 3") )

Hecke(Grg,G)1° (

L]
Proof. It is sufficient to prove the assertion in the case when N =~ F'xR® U, where U
is a representation of B. In this case, it amounts to the following adjunction, which is
a corollary of the Serre duality on G/B:

RHom (U, Resg(V)) ~ RHoms (RCoinV(B, Oz ®U), V).

O
Lemma 3.2.22. For A deep in the dominant chamber,
RCoiaw (B, (ACV){~A ) = Whvwolh-un(i)29)
Proof. First,
RCoinv (B, (womwﬂ){—X}) ~ RCoinv (B-, Mw'ﬂ{—wo(X)}).
Note that for N € Hecke(Grg, GV)IB(L
RCoinv(B~,N) =~ RInv(B~,N){25}[dim(n)].
Hence, the expression in the lemma is isomorphic to
RInv(B~, MY {—wo(}) + 25})[dim(n)] o~ W'w-wo-(wo(i)+3+25)
by Corollary 3.2.17.
O

Thus, we obtain that the expression in (24) is isomorphic to

7
E$tHecke(GrG .G

Y

10 (W' ;w-wo( Awo (12)+25) ’ W*,w’ (' +X) )

for which the vanishing assertion is manifest.
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3.2.23. An application: 2-sided BGG resolution. We will use the geometric interpreta-
tion of baby co-Verma modules to prove the following result:

Theorem 3.2.24. There exists an exact complex ’B% of objects of Hecke(Grg, G)!,
whose n-th term is
®

[
WEW 55,12 (0)=n

We remind that for @& = w- X\ € Wy, its semi-infinite length 17 () is defined as
l(w- (X\+ ) — I(12) for some (or all) large 1 € AT.

Of course, using the equivalence between Hecke(Grg,G)I and ﬁg—mod, we obtain
the corresponding exact complex consisting of baby co-Verma modules over ﬁg. The
rest of this subsection os devoted to the proof of this theorem.

Let Bar,, be the Cousin complex on Grg. lLe., this is an exact complex of perverse
sheaves on Grg, living in positive degrees, whose n-th term is given by

&y W,

WEWq 55 /W,l(0)=n

For ji € A consider the complex Bare * 10wy (p),Gre [[(f2)]. This complex is acyclic,
since convolution with IC_,, (1) ars 18 an exact functor.

We claim that for i’ = fi + 7 with 7 € AT we have a map of complexes
Barg * IC_wo(n),are (1)) = Barg * IC_wo(w),are L))
For w-\ € Wass/W, the map

W*,w-(jri‘/l) *IC ) Gre — W*,w~(5\+/1/) L 1IC

—w()(ﬂ _wo(ﬂl)vGrG

has been constructed in the definition of the inductive system that defines Mw-A,

To check that this map respects the differential, we must show the following. Let
W =w-Aand @' = w -\ be such that I(@') = (@) + 1, and the orbit I - & is in the
closure of I -4'. Then we claim that for i € At the orbit I - (w - (X + f1)) is in the
closure of T - (w - (N + 1)), and the square

WHw-A o ICp,GrG N W*,w/.)\/ . IC[MGrG

| |

Wrw Q) e (V)
commutes, where the horizontal arrows are the canonical maps, corresponding to ad-
joining orbits.
Lemma 3.2.25. IfI-w C I -0/, then as elements of Wapp, w < 0'.

Proof. We need to show that I - wpy, C I - u?%lG, where the subscript g, means that
we are dealing with an orbit in Flg (vs. Grg).
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Since the projection Flg — Grg is proper, there exists some w, € Wy, such that
w1 < W', and w; = wmod W. We have:

I(w) < l(wy) < U(w') — 1.
Since [(w) = (@) — 1, we obtain that w; = .
g

Note that by the lemma, we obtain that w - (A + 1) < w’- (N + j1), and hence we do
have a containment

I-(w-(A+p)CI-(w-(N+p).
Also, by the lemma, the map W*¥* — W' ig obtained from the map

(25) j*,w-jx - j*,w’~5\’
by convolving with 01 Gr,. Note that the map j*,w-(S\er) — j*,w’v(X’er) is obtained from
(25) by convolving on the right with j, ;.

To prove the commutativity of the above diagram, it suffices to notice that the left
vertical arrow is equal to the composition

*,UJ'}\ . ~ 7 < . ) < *7[‘ ~
W * ICH,GTG - J*,w-)\ * ICMGTG - J*,w-)\ * W -

. . 4 3 o VAW (A
j*7w.5\ *]*,ﬂ * 51,GrG — j*,w'()\'f‘ﬂ) * 517Grg ~W ( u)7

and similarly for the right vertical arrow.

4. SHEAVES ON SEMI-INFINITE FLAGS
4.1. Drinfeld’s spaces and factorization.

4.1.1. Let X be a global curve. Let Bung denote the moduli stack of principal G-
bundles on X. Let us recall the definition of the Drinfeld space Buny—. ’

First we define a bigger space mﬁv, that classifies the data of a G-bundle Pg on
X, and its generalized reduction to IV, i.e., a collection of non-zero maps defined for
each A € AT

K Vgi‘c — Ox,
where V* is the corresponding Weyl module over G, and ng\G is the associated vector
bundle. The collection x* is required to satisfy the Pliicker relations, cf. [FM, BG].
We will denote by p the tautological projection B—unle — Bung.

We have a natural action of 7' on Buny-: an element ¢ € T multiplies each xk* by
A(t). Tt is easy to see that the map B—ungvf /T — Bung is proper.

If [G, G| is simply-connected, then Bun;\ff is the sought-for Drinfeld space Bunp-.
Otherwise we proceed as follows.

Lemma 4.1.2. Let G; — G2 be an isogeny, i.e., a homomorphism, whose kernel
is contained in Z(G1) and whose image contains [Ga,Ge]. Then the natural map
Bunle(Gl) — Bun;\ff(Gg) is a closed embedding.

"The esposition in the section substantially relies on the results of [BG], [BFGM] and [FGV], and
certain familiarity with these papers will be assumed.
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Proof. First, it is easy to see that if we have a short exact sequence
1-G —-G—-T —1,

where 7" is a torus then Bunle (G — Bunle (@) is an isomorphism. This reduces
the assertion of the lemma to the case when G — Gg is surjective with finite kernel.
Let k be the index if Ay in As.

Since each of Bungvf (G;)/T;, i = 1,2 is proper over Bung,, the map
Buny_ (G1)/Ty — Buny_ (Ga)/Ts

is proper. Hence, it remains to see that the map Bungvf (Gh) — Bunle (G2) is injective
on the level of S-points for any base S.

Let (Pg,,{x3}) be an S-point of Bunle(Gg), and let (Pg,,{#x}}) be its lift to a
point of Bungvf (G1). Then the image of 7 in Vfﬁ‘Gl is fixed by the condition that

MN®k _ kX .y kXN o kA
(/{1) = Ko 'V?G1 _VTGZ —>OX

Hence, when Pg, is fixed, any two choices of systems {7} differ by an element of
Ty := ker(T} — T5) ~ ker(G1 — G2). However, two such lifts are isomorphic as points
of Bun?vf (G1), via the automorphism of P, given by the same element of 77 5.

Finally, if ’.P’Gl is another principal Gi-bundle that reduces to G, there exists a

Ti,2
principal T1 >-bundle Pr, ,, such that P, =~ Pg, x Pr,,. Then for every X as above,
A oA A
Vi, = Voo, @ P,

where ’.Pr:);l , 1s the line bundle associated with P, , and the character A.

However, the data of x{ for V;, identifies the line sub-sheaf
G1

(P2.)1 € (V) @ (Py,) 7"

with O, thereby giving a trivialization of P, ,.

For an arbitrary group G we can find a group G’ with a surjective isogeny G’ — G,
such that (a) ker(G’ — G) is connected, and (b) [G’, G'] is simply connected.
We define Buny- as the image of Buny-(G') = Bun;\ff (G') in Bunle under

Buny_ (G') — Buny_ (G).

By the above lemma, this is a closed substack of Bunle, and it is easy to see that it
does not depend on the choice of G'.
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4.1.3. Variants. We fix a point x € X. For a coweight v, let S,;B—un/Nf denote a version
of B—un;\p, where we allow each x* have a pole at 2 of order < (\, 7).

For G’ as above, due to the fact that the kernel of G’ — G is connected, we can find
a preimage ' of ¥ in the coweight lattice A’ of G’, and we define <;Buny- C Spm}
as the image of Sp/m/]vf (G') under
(26) <»Buny-(G') = <;Buny-.

As in Lemma 4.1.2 one shows that the map in (26) is a closed embedding. Moreover,

its image is easily seen to be independent of the choice of I/ for a fixed G’, and of G’
itself.

If 71 — 5 € AP% we have a natural closed embedding <z, Buny- — <5 Buny-. We
define o Buny- as

lim (S,;Bun]w)
veEA
with respect to the natural ordering on A and the above closed embeddings.

By definition, ooBuny- splits into connected components, numbered by the quotient
of A by the coroot lattice.

Let ,;Bun?vf is an open substack of S,;Bun/Nf corresponding to the condition that
each x* has a pole of order exactly < (\,7) at x. Set

- ., _
yBuny- = yBuny- N <yBuny-.

One easily shows that ;Buny- equals the image of D,Bun},, (G") under the map of (26).

Let us note that over each ;Buny- there exists a canonical N~ [[t]]-torsor, which we
will denote by ;N. We will denote by &N the induced N~ ([t]/t*)-torsor.

We will denote by i<; (resp., i) the closed (resp., locally closed) embedding of
<pBuny- (resp., ;Buny-) into oo Buny-. We have:

sBuny- = <;Buny- — U <, Bunpy-.
- n<v—
We let ; Buny- denote the open sub-stack of ;Buny-, where we demand that the

maps «* have no zeroes away from z. This substack is isomorphic to Bung- X pt,
Bunp

where the map pt — Bunp corresponds to the point iP%(D -x). We will denote by i, the
locally closed embedding of ; Buny- into o Buny-; by [FGV], Sect. 3.3, the morphism
1, is affine.

Let T’ := 2{, ..., 2}, be a collection of points on X, distinct from z. Let OoBunEZF

be the open sub-stack of . Buny- defined by the condition that the maps x* have no

zeroes at o, ..., x,,. Asin [FGV], Sect. 3.2, one shows that over OoBunEZF there exists
a natural torsor with respect to the group-scheme N~[[t}]], denoted N?' | where
yeens Y

t; is a local coordinate at x; Moreover, NT' carries an action of the group-indscheme
CINT((#).

=1l,...
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For an integer & let ¥ Bung denote the principal GF-bundle over Bung corresponding
to choosing a structure of level k at = in a G-bundle. We will denote by ¥ Buny— the

Cartesian product o Buny- X k Bung.
Bung

We will denote by ’%DBun N-s ’,§Bun N IgBun n- the corresponding stacks obtained
by base change. By a slight abuse of notation, we will use the symbols i<y, iy and iy
for the embeddings of these stacks into ¥ Bun,-. Similary, we introduce the stacks

=—n.z7T 7 .
k Buny~" , *NT' as Cartesian products.

Note that there is a natural isomorphism

N—([t]/tk
(£<}/ )'?N.

v

(27) pBuny- =~ G([t]/t")
In particular, we obtain a natural map
oy : EBuny — (G/N7) (/%) — (G/B7) (/).
The restriction of this map to l]lfBunN, denoted ev, is smooth.

4.1.4. For ji € A let BunﬂB be the corresponding connected component of Bung. We
recall that Bun‘é can be interpreted as the stack classifying the data of a principal G-

bundle P; on X, a T-bundle Pp, such that each associated line bundle iP% has degree
—(A, f1), and a collection of bundle maps

KN ?é‘p — Vfﬁ‘c,

defined for A € AT, which satisfy the Pliicker relations. (Here P} denoted the line
bundle associated with Pr and the character A : T' — G,.)

Note that if i is such that (o, i) > (29 — 2) for all positive roots «, then the map
ph Bun%, — Bung is smooth.

Consider the Cartesian product oBunpy- X Bun[‘B. We will denote by 2" the
Bung

corresponding Zastava space, i.e. the open substack of the above Cartesian product,
defined by the condition that the reductions to N~ and B are transversal at the generic
point of the curve. This means that the composed maps

A, — A
Py Vgi‘G L5 0x

are non-zero for all A € A™.

We will denote by ¥ Z# the stack obtained by adding a structure of level k to the
G-bundle Pg at x. All of the above stacks are acted on by the group 7.

Let us denote by ]%DZ,” (resp., ’32‘1, kZ1) the preimage in k¥ Z# of the substack
’%DBuan (resp., *Buny-, *Buny- = ’%(]Buan) of ¥ Buny-. Note that ’%DZﬂ is
empty unless 7 4 i € AP°. By ’;Z’l we will denote the open substack of ’gzﬂ equal to
the preimage of ¥ Bun, - .

For ji € AP let X” be the corresponding partially symmetrized power of the
curve. By definition, X* classifies the data of a principal T-bundle P and its generic
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trivialization, such that for A\ € AT the resulting maps ’.P% — Ox are all regular and
the divisor of zeroes has degree (\, f1).

For 7 € A, let < X" be a version of X#, where the maps iP% — Ox are allowed to
have poles at x of order < (\,7) for A € AT. This space is empty unless i + 7 € APos,
If 1 — Uy € AP we have a natural closed embedding

< XF = < XP.
We define oo X*# as the ind-scheme

X = lim (SpXﬂ>
veEA
with respect to the usual ordering on A and the above closed embeddings. This space

also splits into connected components numbered by the quotient of A by the coroot
lattice.

By construction, we have a natural map
o8 o ZP — X
We will denote the restriction of 8" to <zZF (resp., Z# = <oZF) by <ys” (resp., s").
Note that <;s" maps to < X*.

We will denote by *s# the composition of s# and the forgetful map ¥ 2% — 2",
and similarly for ]21)5’1, kgit,

o o .
Let X denote the open curve X — x, and X* be the corresponding open subset of

~ ° ~ ~
X*. For i1, fio we will denote by <X“1 X OOXM)d' ~the open subset in the product
iS]
° ~ ~
XM x X" corresponding to the condition that the two divisors have disjoint support.

As in [BFGM], we have:

Lemma 4.1.5. For iy + fio = [t there exist natural isomorphisms

ko (}}m xooX”2>

~ (Z_ﬂl « K Zﬁz) % ()O([Ll % OOXﬁz)
o X >

disj X1 x o X2 disj

Let 2’ be any point of the curve, and for ji € AP%, let i - 2’ be the corresponding
element of X#. Then, by [BFGM], we have:

(28) (s") (- a’) = (N((#) - 1) N (N=((#) - Lag)

where t’ is a local coordinate at 2.

In the same way we obtain that for an arbitrary element i € A and the point
fi-x € o XH

(29) L§" = (B () = (V@) 1) x GU(0)/G
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4.1.6. For an integer m, let Jetst (7)™ be the group-scheme over X (m) " whose fiber
over a divisor ¥m; - z;, where the points x; are distinct, is IIT'[[}]]. More precisely,
j

for a test-scheme S and an S-point ¢ of X (™) its lift to an S-point of Jets™ (7)™ is an
X (m)-map
fgo — T,
where ﬁp C S x X is the formal neighbourhood of the preimage I', of the incidence
divisor in Xf"ﬂ x X under ¢ X id. 5
If fi,7 € A are two elements with fi+7 € AP°®, we have a natural map <, X* — X (m)
where m = I(fi + 7), and let < Jets™(T)# be the resulting group-scheme on <; X*.

Proposition-Construction 4.1.7. The group-scheme < Jets™(T)" acts naturally on
<&k

Proof. To simplify the notation, we will assume that ; = 0, and we will work with the
"usual” Zastava space Z.

According to [BFGM], Sect. 2, given an S-point of Z#, the resulting G-bundle Pg
on S x X acquires a trivialization on S x X —I'y,, where ¢ is the composition of the
initial map to Z* and

ok xh ., x(m)

As usual in this situation, given a map gg : fsp — (G, we can produce a new G-bundle

t:, by declaring it to be the same as Pg on S x X —T'y, and ﬁp and changing the
gluing data on the formal punctured neighbourhood of I', by means of gs.
If gg was a map r o — T, then the data of x* and kM~ for Pg give rise to well-defined
data of (k)" and (k*7)’ for P},. Thus, we obtain a new point of Z/.
O

Note that < Jets™(T)" contains as a direct factor the constant group-subscheme
with fiber T. Its action on <;Z" coincides with the ”global” one, mentioned above.

Let us consider now % Z%. One can show that the above action of < Jets™(T)"
on <2 does not lift to an action of £,2#. However, we do have an action fiber-wise

over each point of <;X#. For example, the action of T[[t]] on ES[‘ is given in terms of
isomorphism

£57 = (N((1) - an (N ()) - (7)) x G(()/G",

Grg

by the natural action of T'((¢)) on G((t)) by left multiplication.

We will use the following construction. Let us choose an identification 7' ~ G/,
and a point y € X — x. For a string of positive integers m = myq, ..., m,, consider the
affine space consisting of r-tuples of functions (X — y) — A!, whose values at z is 1,
and the pole of the i-th function at y is of order < m;. We will denote this space by
Maps(X,T)™.
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The Abel-Jacobi map gives rise to a morphism Maps(X,T)" — X™ := II X (™),

and we have a natural morphism

(Maps(X,T)mxX) X <Xm><X> — T,
XTx X disj

o _ o _

where <X mxX ) C X™ x X has the same meaning as before—the complement
disj __

to the incidence divisor. (This morphism explains the notation Maps(X,T)™ for the

above scheme.)

Proposition-Construction 4.1.8. We have a natural map

actr : <Maps(X, )™ x %D2ﬂ> X <Xm X <,;Xﬂ> — R 2R
disj

o
XmXSZ;XI'L

Proof. We retain the notation from the proof of the previous proposition-construction.
The difference now is that the map gg is defined on a Zarisky-open of S x X that
contains I', and S x x. In particular, the restrictions of Pg and P}, to the formal
neighborhood of z are identified. Hence, P, is also equipped with a structure of level
k at x.

O

4.2. A category of perverse sheaves.

4.2.1. For an integer k we define the category Perv (rﬂ%)ck to be the full subcategory
of the category of T-equivariant perverse sheaves on X Buny-, consisting of objects

satisfying the following three properties:

/
m

of F to ¥NT' is equivariant with respect to the group-indscheme 1H N=((t)))
j=1,...m

(1) For a finite collection T = z,...,2,, of points on X distinct from z, the pull-back

(2) The factorization property:

We say that a perverse sheaf F on k Buny- is factorizable if for any fi1, iz, satisfying
(o, 1) > (29 — 2) and fig — fiy € AP, the retsriction of the pull-back p~#2*(F) onto
the left-hand side of
léoz_[n « (Xﬂz—[u XooX[“)

oo X P2

~ (Z_ﬂ2—ﬂ1 Xléozﬁl) % (}}[m—ﬂl XooX[”)

disj XA2=1 x oo X1 disj

is isomorphic (up to a cohomological shift by the corresponding relative dimensions) to
the restriction onto the right-hand side of the external product
IC gin iy, Rp ™ P11 %(F).

(Note that both complexes in question are perverse sheaves, since the maps p~"i,
i = 1,2 are smooth by assumption.)

(3) If ¥ is supported on '%I;Buan, then for i € A, satisfying (a, i) > (29 — 2), the
pull-back of F on ]%DZ,” is Maps(X, T)™-equivariant for any m. The latter means that



MODULES OVER THE SMALL QUANTUM GROUP AND SEMI-INFINITE FLAG MANIFOLD 51

there exists an isomorphism between two pull-backs of (p’l’_)"‘(fr'")bé g O

Maps(X,T)™ x &2/ X XM x p X ,
<v o S
XX < XA disj

which induces the identity map on the further restriction of both sides to the unit point
of Maps(X,T)™.

Remark. As we shall see, imposing property (1) is in fact superfluous, i.e., it follows
formally from the factorization property (2). In addition, some portion of property (2)
follows from (1).

In addition, if k& = 1 (which the main case of interest for this paper), property (3)
follows automatically. ®

In general, we shall see that property (3) is equivalent to imposing the condition that
either *- or l-restriction of pﬂv_(ff")bz o tO 23’1 is T'[[t]]-equivariant.

In the sequel we will formulate a conjecture, from which it follows that the category
Perv (3"[ %)Gk is independent of the curve X, and possesses the symmetries expected
from ”the category of G¥-equivariant sheaves on F12 := G((¢))/N~((t)) - T[[#]]”, in
particular, it will carry an action of the lattice A ~ T((t))/T[[t]] by translation functors.

4.2.2. Our present goal is to describe the irreducibles in Perv (?l%)Gk. Recall the
isomorphism (27), which realizes sBuny- as a fibration over the base G/N~([t]/t*)
with typical fiber XN. (In fact, Buny- is a principal N~ ([t]/t*)-bundle over the
product G/N~([t]/t*) x ;Buny-.)

In particular, for a perverse sheaf 3 on (G/N~)([t]/t"), we can form the twisted
external product

g’ gIC@N € Perv(¥Buny-).
Up to a cohomological shift, it is isomorphic to the pull-back of
FRIC 5 € Perv(G/N~([t]/t*) x ;Buny-).

»Bun
Proposition 4.2.3.
(1) For ¥ € Perv(?l%)Gk, all perverse cohomologies of the restriction i,(F) are of
the form ?’@IC;;N, where ¥ is a perverse sheaf on (G/N_)([t]/tk), that comes as a
pull-back from a perverse sheaf on (G/B_)([t]/tk).
(2) The perverse sheaf (resp., each perverse cohomology of) (E,;)g*(i}"QICIEN) (resp.,
(E,;)g(&"’@ICgN)) for F as above is an object of Perv(?l%)Gk.
(3) Perverse sheaves of the form (i) (F X IC;;N) for F as above are all the irreducible
objects of Perv (fﬂ%)Gk.

8We remark also that property (3) has to do with the fact that our category Perv(?l%)ck models
perverse sheaves on G((t))/N~((t)) - T[[t]] rather than on G((¢))/N~((¢)).
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The rest of this subsection is devoted to the proof of the proposition. Note, however,
that point (3) is a formal corollary of points (1) and (2).

N ~ ~ ~
The factorization isomorphisms of Lemma 4.1.5 respect the substacks §Z“= ,@Z“, %DZ“
of £ Z#. Hence, it makes sense to introduce the category L, Perv (fﬂ%)Gk, which is a full

subcategory of Perv (’gBuan), consisting of objects, satisfying the same conditions

(1), (2) and (3) as in the definition of Perv (?l%)Gk.

It is clear that for F; € Perv (3"[ %)Gk, the perverse cohomologies of the restriction
i,(F1) are objects of ;Perv(fﬂ%)ck, and vice versa: for Jy € LPerv(S’"l%)Gk, the per-
verse sheaf (resp., each perverse cohomology of) (iy)1.(F2) (resp., (iy)1(F5)) belongs to
Perv(&"l%)ck.

Therefore, the assertion of the proposition reduces to showing that the functor ¥ —

F X Icg%]\,, defines an equivalence

Perv((G/B_)([t]/tk)) — 'VPerv(H-"l%)Gk.

First, we claim that every object of ! Perv (fﬂ %)Gk is the Goresky-MacPherson ex-
tension of its restriction to the open sub-stack 5 Buny. Indeed, if it were not, we would
be able to find fi; and fio large enough, so that either ! or x-restriction of F to the
closed sub-stack

<(Zﬁ1 _ %ﬂl) « Iéozﬁz) « (}}ﬂz « ooXﬁ2>

XA % o X1 disj

would have non-zero perverse cohomologies in positive (resp., negative) degrees. How-

ever, this contradicts the factorizability property (2).

Let us denote by 5 Perv (9"l z ) G* the corresponding full subcategory of Perv (ff Bun N7>

consisting of perverse sheaves, satisfying (1) and (3). We are reduced to showing that
F' o FRIC, 0+ Perv((G/BT) ([1/15)) — Perv(F1%) <"

is an equivalence. Note that the latter functor is isomorphic, up to a cohomological
shift, to the pull-back functor under the smooth map

(30) FBuny- =% (G/N7)([t)/tF) — (G/B7)([t/t%).

The fact that the functor in question is fully faithful is clear, since the map in (30)
has connected fibers. Hence, it remains to show the essential surjectivity.

First, let us show that any F € Perv (l'f Buan) is the pull-back under ev; of some
perverse sheaf 3 on (G/N)([t]/tF).
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For any non-empty collection of points Z’, distinct from z, consider the pull-back
of F to EBuny-  x kNT'. By property (1), it is equivariant with respect to the
EBun

group-indscheme — TI.  N7((t})).
7j=1,...m
This implies our assertion, since the above group-indscheme acts transitively along

the fibers of the composed map
(31) PBuny-  x  "NT — (G/NT)([t]/tF).

EBun
sBuny—

Thus, it remains to show that condition (3) on F implies that the perverse sheaf
F on (G/N7)([t]/tF) comes as a pull-back from a perverse sheaf on (G/B~)([t]/tF).
Le., we have to show that F is equivariant with respect to T'([t]/t*). Note that the
equivariance with respect to the subgroup 7' C T'([t]/t*) follows from the assumption
that F on ﬁBuan was T-equivariant. Thus, it remains to check the equivarince
property with respect to the unipotent subgroup ker (T ([t]/t*) — T )

For fi such that i + 7 € AP° consider the composed map
(32) 53— (G/N7)([H/h),

o _ o .
where £F” is the fiber of K2 over i - 2 € o X*. The above map is equivariant with
respect to T'[[t]] acting on the two sides. Moreover, it is surjective if i was chosen large
enough.

Let k' > k be such that the action of T'[[t] on &§# factors through T'([t]/t*). Let
be large enough, so that the map Maps(X, T)™ — T([t]/t*), given by Taylor expansion
at x, is surjective.

o ’
Property (3) for this 7 implies then that the restriction of F to £F# is T([t]/tF)-
equivariant. This implies that F’ is also equivariant with respect to this group.

4.2.4. We will now investigate the mutual dependence of conditions (1) and (2). For a
o o n.z.
natural number m consider the product X™ x ¥ Buny -, and let (X ™ x k¥ Bun N,)

denote the open subset, corresponding to the condition that the zeros of the maps x*
are away from the m marked points of X™. In other words, the fiber of this space over

n.z.T’

o
a given T € X™ is the stack that we denoted by ¥ Bun -
Over X™ we have a group-scheme, denoted Jets™(N7™)™, whose fiver over 7/ =
{21, ., 23, } is ILNT[[t}]], where the product is taken over distinct points among the
x}’s. In addition, we have a group-indscheme, denoted Jets(N )", whose fiber over the
same collection of points is IIN~((¢})). Since N~ is unipotent, this group-indscheme
can be represented as a union of its closed group-subschemes.

n.z.
Finally, over (X ™ xk Bun N,) there exists a canonical Jets™ (N ~)™-torsor, which

we will denote by ¥N™. The action of Jets™(IN7™)™ on *N™ extends to an action of
Jets(N7)™.
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Lemma 4.2.5. Let F be a perverse sheaf on ’;OBuan, which satisfies property (1) of
Sect. 4.2.1. Then the pull-back of F to *N™ is equivariant with respect to Jets(N~)™.

This follows from the fact ”fiber-wise equivariance” implies ”equivariance” for a
unipotent group-scheme.

Remark. Arguing as in [FGV], Sect. 6.2, one can show that condition (1) is equivalent
to the following, seemingly weaker, condition. Namely, it is sufficient to impose the
N~ ((t'))-equivariance condition for just one fixed point 2’ distinct from x.

Let us say that a perverse sheaf 3 on ¥ Buny- has a weak factorization property if, in
the notation of Sect. 4.2.1, the isomorphism between p~#2*(F) and ICyy—p, K p™H1*(F)
holds over the open subset

(E_[’Q‘ﬂl % léozm) % ()o([n—ﬂl % ooXp1>

XHA2—R1 x o X A1 disj

o ~ ~ ~
Since Z#27M1 is smooth, this condition is equivalent to the restriction of p~#2*(F) to
the above open subset being constant along the first factor.

Proposition 4.2.6. For a perverse sheaf F on ’;OBuan, property (1) is equivalent to
the weak factorization property.

Before giving a proof let us make the following observation: we have two maps

— — —m ets+(N7)m k Es—
hy-, hn- :Jets(N7) X N™ — 2 Buny-,

the first being the tautological projection, and the second is given by the action of
Jets(N ™)™ on *N™. If ji, fix € A are two elements, with iy — ji; € AP°® such that

[e] o .
m = l(fig — [11) there is a natural projection X" — X#27#1 and a map

o . . o _ B B °

(33) (Zm—ul % léozm) X ] (Xm—ul % OOXm) X XM
XFA2=R1 x oo X1 disj ;(ﬂszq
Jetst(N)™ i
(34) Jets(N)™ X N,
such that its composition with A is the projection
o _ . . o - - ) - N
<ZH2—M1 % /;ozlu) % (XH2—H1 x OOXm) < X™ Iéozm N l;oBuan,
X P21 x oo X1 disj )O(ﬂzfﬂl

and its composition with hy identifies via Lemma 4.1.5 with

~ o ~ ~ ~ ] ~ _—
b2 (X xm) o X k2 k Buny
co X H2 disj o .
X fg—f1
Now let us proof the proposition:
Proof. Assume first that F satisfies property (1), and hence, by Proposition 4.2.5, its

pull-back to *N™ is Jets(N ~)™-equivariant. We obtain that the restrictions of Z*N, (F)
- JetsT(N7)™
and h%},_(F) to any finite-dimensional subscheme of Jets(/N~)™ X EN™ are
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isomorphic. Then the weak factorizability of F follows from the properties of the map
from (33) above.

To prove the implication in the opposite direction, we reverse the steps. We have to
show that for a given finite collection of distinct points T = {x], ..., 2}, }, the restrictions
— — JetsT(N—)™
of h - and h n- to the fiber of Jets(N )™ X EN™ over T/ € X™ are isomorphic

over every finite-dimensional subscheme of this ind-scheme. Since each N7((¢})) is a
union of pro-unipotent subgroups, it is sufficient to show that the isomorphism holds
after the base change with respect to

(’gozﬂ X oo(X —E’)ﬂ> — * Buny-
oo XH
for fi large enough. )
Note that the above fiber, base-changed to ]gOZ“, is isomorphic to

(52" % X =7)) < I (N7((#) - L ).
o X J
Our assertion follows now from (28), since N~ ((t})) - 1ar can be exhausted by affine
subspaces, each of which contains as a dense subset the intersection

(V) - &) 0 (N7((#)) - Lare)

for some fi’.

As a corollary of the first assertion of the proposition, we obtain the following:

Corollary 4.2.7. Let 0 — F| — F — Fy — 0 be a short exact sequence of objects
of Perv(®. Buny-)T, with F1,Fo satisfying properties (1) and (2) of the definition of
Perv(&"l%)ck. Then F also satisfies properties (1) and (2).

Proof. Since the group N~ ((¢')) is (ind)-pro-unipotent, the only non-trivial condition
to check is the factorizability property. For F as above, its pull-back to

kogiie ()'}ﬂz—mxooXm)

oo X H2

~ (Z‘b_‘11 xﬁoz’h) X (5(‘12_[“ xooXm)

disj XA2—1 x oo X F1 disj

is the Goresky-MacPherson extension from the open sub-space

(2!12—;11 % léozm) X ] <)o(ﬂ2—ﬂ1 % ooX[”) .
XH2—i1 % o) X1 disj
However, the latter is constant along the Z#2~#i_factor because of property (1),
Lemma 4.2.5 and Proposition 4.2.6. Along the # 2/ factor it is isomorphic to p~#1*(F)
by (33).
O
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4.2.8. Our present goal is to establish the following:

Proposition 4.2.9. The category Perv(&"l%)Gk, as a subcategory of the category of
T-equivariant perverse sheaves on * Buny -, is stable under extensions.

The rest of the present subsection is devoted to this proposition. In view of Corol-
lary 4.2.7, we have to show that if 0 — F; — F — F5 — 0 is a short exact sequence in
Perv(k Buny- )T with F1, 5, € Perv(?l%)Gk, then JF satisfies property (3).

Consider the pull-back

acty ((p~")"(F)) € Perv((Maps(X, T)™ x ’;Dzﬂ) X (%m X SDX”) )
disj

o
XmXS,)XI'L

Since Maps(X,T)™ is isomorphic to the affine space, it is sufficient to show that
the restriction of the above pull-back to the fiber over every geometric point z :=
A A— E o : :
(Pa,{r*},{rM"}) € 5 2" is a complex with constant cohomologies.
By the factorization property, it is sufficient to consider the case when the point
k 5f(z) € X" equals ji- 2. In this case, the map act’ factors through the action of

ker(T[[t]] — T) on ¥ gk,

Hence, it is sufficient to check that the restriction of F to K g is ker (T[[t]] — T)—
equivariant. But the above restriction is an extension of the restrictions of ¥F; and
F,. Since for 7' large enough the map Maps(X,T)™ — ker (T[[t]] — T> is surjective
with connected fibers, the fact that 3 and Fy satisfy property (3) implies that their

restrictions to * §# are ker <T [[t]] — T) -equivariant. This proves our assertion, since

ker <T [[t]] =T > is pro-unipotent, and hence the equivariance property is stable under

extensions.

Thus, Proposition 4.2.9 is proved. As a by-product we obtain the following alterna-
tive way to spell out condition (3):

Corollary 4.2.10. Let F € Perv(’éoBuan V' be a perverse sheaf, satisfying properties
(1) and (2) from the definition of Perv(?l%)Gk. The the following are equivalent:
(1) F satisifies also property (3).

(2) The *- (or I-) restrictions of F to every £ Buny- are such that their perverse coho-
mologies are pull-backs from T([t] /t*)-equivariant perverse sheaves on G/N~([t]/tF).

(3) The *- (or I-) restrictions of (p7)*(F) to every k. F* is T|[t]]-equivariant.
4.2.11. Recall that for 7 € A, we have introduced the category
;Perv(fﬂ%)ck C Perv(¥Buny-),

which is equivalent to
,;Perv(ff"l%)ck C Perv(® Buny).
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Proposition 4.2.12. Let F € ,Perv (?l%)Gk be such that (iy)(F') is a perverse sheaf.
Then for F € Perv (?l%)Gk the canonical map

Botl g (Go)(@),5) = Batl g ((o)(F),5)
oo N— oo N—
s an isomorphism.

Note that due to Proposition 4.2.9, the above proposition can be reformulated as
follows:

Emt;erv (?l%)Gk (Gl))' (3:'/)’ 35) ~ R HOIH}; Buny (3‘/’ Z;(§)> ‘

Proof. The fact that the map in question is injective is evident, since (iy)(F') surjects
onto (73)1(F'), and F has no sub-objects supported on ¥Buny- — % Buny-.

To prove the surjectivity we can replace ¥ Buny- by its open sub-stack I;,B—un N—»
which is obtained by removing from * Buny- all ';D,m]vf for v/ < D. ]_Evidently,
';me is closed in gﬂme.

Let

0—-F =T — (ix)(F)—0
be an extension. We have to show that it is induced from an extension of (iy)(F") by
F. Let F) be the perverse sheaf on ];;me obtained as a Goresky-MacPherson of
the restriction of F; to the open substack

£ Buny- — (fBuny- -} Buny-).
We claim that F; is the desired extension. Namely, we have the maps
F e Ty — (ip)(F),
and we claim that this is a short exact sequence. 3
To check this, by Proposition 4.2.3(3), it is enough to show that F; is an object

of the corresponding category ZgPerv(rJ'"l%)Gk. However, properties (1) and (3) are
automatic, and the factorization property (2) follows by combining Proposition 4.2.6

and the definition of Goresky-MacPherson extension.
O

The 5-lemma yields:
Corollary 4.2.13. For F as in the proposition, the natural map

2 - , 9 o
E:L'tPerv(iTl%g)Gk <(ZD)!(3:' ), 35) — R Homl;g Buny (f}' , ZD(:}'))
18 injective.
Remark. ;From Proposition 4.2.12 one can formally deduce that the maps
i - , ; o
Etherv(fﬂ%g)Gk ((Zy))!(ff ), 37) — R HOII];; Bun (3"~ , ZD(S:))
are isomorphisms for all 7.

4.3. The spherical case.
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4.3.1. Let Perv(?l%)GHt” denote Perv(?l%)Gk for k = 0; this is a full subcategory in
sBuny-. For 7 € A we will denote by IC;; the corresponding irreducible, i.e.,

1G5 > (ip)1(IC; Buny) > (i9)1(IC gy )-
These are the irreducible objects of Perv (fﬂ%)G[[tﬂ.

Proposition 4.3.2. The category Perv(?l%)GHt” is semi-simple.

Proof. It would be enough to show that if 1C;, and 1C;, are two simple objects of
Perv (3"[ %)G[[tﬂ, whose support is contained in some <;Buny-, then over some open
substack of <;Buny-, Ext'(1Cy,,1Cy,) is zero.

Let o1, be two elements of A. In order for Ext'(IC;,,1Cy,) to be non-trivial, the
support of one sheaf must be contained in the closure of the support of the other. This
means that either 7 < 5 or p < . By Verdier duality we can assume that 7y < .

Consider the open sub-stack of <, Buny— obtained by removing the closed sub-stack
<nBuny- — 5 Buny. As in [FGV], Sect. 6.1.4,

Ext' o  (ICy,,1Cs,) — Ext! (1G5, 1C5,),

<woBun <wyBuny— —(<p Buny— —p; Buny
so it is enough to show that the latter is 0. Since
7 Buny C <p,Buny- — (<, Buny- — 5, Buny)

is closed, the latter Ext! is isomorphic to
.
Rl Hom 7, Buny (IC 5 Buny s Uy (IC 5y BunN)> .

There are two cases: if 71 < 5, then we are done by [BFGM], since i}, (IC,, Buny)
lives in the cohomological degrees > 2.
If o = 14 = D, then the assertion follows from the fact that ; Buny is simply-
connected, cf. [FGV], Sect. 6.
]

4.3.3.  Consider the object of D(,Buny-) equal to (i5);(IC 5— ). This is a complex

sBun,,_
that lives in non-positive cohomological degrees, and each of its perverse cohomologies

is an object of Perv(i}"l%)c[[t”, by Proposition 4.2.3.

Theorem 4.3.4. The —k-th perverse cohomology of (iy))(IC 5= ) is isomorphic to

pBun
the direct sum over collections of k distinct positive roots {1, ..., Br} of

lCD—Eﬂj'
J

Corollary 4.3.5. The complezx (i;)(IC 5— ) (resp., (;ﬂ)*(ICDmN, )) lives in the

pBun
cohomological degrees [—dim(n),0] (resp., [0,dim(n)]) and its — dim(n)- (dim(n)-) de-
gree cohomology is isomorphic to 1C;_o5.
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The rest of this subsection is devoted to the proof of the above theorem. For ji € AP

consider the stack S,;Bunjg\fi, fibered over X#, classifying pairs (D € X#, {x*}) such
that each x* factors as

Vi, — OX</\(1?-x—D)) ~ Oy,

Let Bun’}\,, be the open sub-stack of S,;Bunjgvff, corresponding to the condition that

the maps Vgi‘G — Ox <)\(D cr— D)) above, are bundle maps.

It is easy to see that ; BunﬂN, is smooth over X#. The projection S,;B—un]SV’i — XH
is ULA (universally locally acyclic) with respect to the IC sheaf on this stack, by [BG],
Sect. 5.2.

We let 7" (resp., i) denote the natural maps from the above stacks to <;Buny-.

By [BG], =" is finite (and, in particular, proper), and i# is a locally closed embedding.
Moreover, by [FGV], Sect. 3.3, i is affine. In particular, every if' (ICD ) is a

perverse sheaf.

The following is a reformulation of the main result of [FFKM] and [BFGM]:

Bun”
N—

Theorem 4.3.6. The k-th cohomology of (i")*(ICy) is isomorphic to the direct sum
over the set of partitions B

fi=Sm; -, 5 # 67, Sm; =k,
where (3'’s are positive roots, of the direct images of the shifted by [k] constant perverse

sheaves on each
XP x » Bun’y,_,
X

where X ¥ ~ HX(mJ’), that maps naturally to X*.
J

For each partition ‘B as above let Ep be the perverse sheaf on X i equal to the
direct image under X¥* — X*# of the irreducible perverse sheaf obtained by taking the
external product over j of the 1-dimensional local systems on each X (") — Diag with

monodromy —1 around the diagonal. By the ULA property of S,;Bun]%/[i over X*, the
tensor product IC<Vmgu ®Exp[—k] is a perverse sheaf.
7 N—

The usual Koszul complex argument yields the following:

Corollary 4.3.7. Irreducible constituents of (i,)1(IC, Buny) are the perverse sheaves

E[L (IC<V—<,1 ®8q3[—k:]> for all i € A and partitions B, each appearing once.

Bun]*\,
Recall that <;§* denotes the fiber of <52 over ji-x € - X*. By [BFGM], we have:

(35) Ho(<o8".1C 20 |0 ) = U @),

in particular, the above cohomology is concentrated in cohomological degree 0.
Combining this result with Corollary 4.3.7, and taking into account that the restric-
tion of g to the diagonal divisor is 0 unless all m; = 1, we obtain the following:
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Corollary 4.3.8. The cohomology group
_k 0 /-
HZ* (<o, 0,)1(1C 5 )|, 50 )

is the direct sum over A\ € AP of U(ﬁ)g+p—5\7
to the number of partitions of X as a sum of k distinct positive roots.

each appearing the number of times equal

Let us note that the intersection ,;%’1 = TN ,;%’1 is isomorphic to
(N((@®) - (7 + @) N (N7((1) - Lorg) -
Thus, Corollary 4.3.8 gives an expression for
(36)
HZ 00 (N () 7)1 (N((0) - (=) €)= H (<87, () (1C, 20|50 ).

Now we can finish the proof of Theorem 4.3.4, essentially be reversing the logic. We

have to show that the multiplicity my(A) of IC,_5 in the —k-th perverse cohomology
of (;ﬂ)!(ICpmN,) equals the number of partitions of A as a sum of k distinct positive
roots, i.e., dim(A¥(n)5).

We will argue by induction on A, so we can assume that the assertion is known for
all ' < A. Consider the cohomology in (36) for fi = A — . By (35), the contributions
of different constituents do not cancel out, and we obtain an equality:

" dim(A*(n)5,) - dim(U (n)5_5,) = Z dim(A*(n)5,) - dim(U (n)5_5,) + mx(N).

This implies the desired equality.
4.4. The Iwahori case.

4.4.1. Note that the stack ¥ Buny- is acted on by the group G([t]/t*). In particular,
we have the convolution functors:

D(G([1]/t*)) x D(*.Buny_) — D(:.Buny_): 8,F = S % F and 8,F — $ x 7.

Moreover, these functors are defined on each of the subcategories

D(%;Buny-),D(;Buny-) and D(} Buny-),
so that the *-convolution commutes in the natural sense with the functors

(i<i)us (i), (i), (i<0)’, (i)', (i)', (ev)'
and the !-convolution commutes with the functors
(i< = (i<i)s, (in), (i), (i<0)”, (i), (in)", (evi)"

Lemma 4.4.2. For ¥ € Perv(i}'l%)ck and any 8 € D(G([t]/tF)), the perverse coho-
mologies of both & *F and 8 a'< F belong to Perv (?l%)Gk.

Proof. This follows immediately, since the action of G([t]/t*) extends to X 2/, respects
the factorization isomorphisms, and commutes with the action of the group-schemes
involved in the definition of Perv (fﬂ%)Gk.

d
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In what follows we will be interested in the case k = 1.

4.4.3. Let us denote by L Buny- (resp., ggBuan) the quotient stack of L Buny- by
B C G (resp., N C G).
We will denote by

Perv(i}'l%)l C Perv(!_Buny-) and Perv(i}"l%)lo C Perv(gm]\p)
the full subcategories of, consisting of objects, whose pull-back to ! Buny- belongs to
Perv(F1%)S", k= 1.

For 7 € A, let us denote by [Buny- (resp., ,I;OB—uan) the corresponding locally
closed substack of  Buny - (resp., ggB—un ~-), and by &v;;, the map from it to B\G /N~
(resp., N\G/N™).

For an element w € Wy, written as w - 7 with w € W, we will denote by I Buny-
(resp., {DOB—un N—) the preimage under &v;, of the Schubert cell

B\(B-w-N")/N~ C B\G/N~.

Let £ Buny- (resp., {DO Buny-) be the preimage of the same Schubert cell under the
map evy : ,I;BunN — B\G/N~. We will denote by i and ig the corresponding locally
closed embeddings.

We will denote by IC; € Perv(I_Buny-) the intersection cohomology sheaf on
IBuny-. In other words,

|Cu~, ~ (;17)!* (Ing/Bf gICZJIN),
in the notation of Proposition 4.2.3. In particular, we see that 1Cy is an object of
Perv (3’"1 %)I , and these sheaves are all the irreducibles of the categories Perv (3’"1 %)I
and Perv(?l%)p.

For @ = w - 1 as above, let us denote by V3 and Ay the complexes
(;D)! (j!,w~wo g Icgw) and (ED)* (j*,w-wo g IC£N>7

respectively, where ji ., (T€SP., Jxw-wo) 1S the perverse sheaf on G/B™~ corresponding
to the same-named perverse sheaf under the isomorphism G/B~ — G/B, given by the
right multiplication by wy.

According to the above, we can act by objects of D(G/B)? (resp., D(G/B)V) o
objects of Perv (9"l bl ) I'and obtain complexes, whose cohomologies belong to Perv (3’"1 %)

(resp., Perv(&"l%)fo). Evidently, we have:

~ B

(37) Tt * Vs =~ Vigaws a0d Juw; * Dy 2 Ay g

provided that I(wy - wy) = l(w1) + [(w3).

Proposition 4.4.4. Both Vg and Ay are perverse sheaves.
iFrom Proposition 4.2.3 we obtain:

Corollary 4.4.5. Both Vg and Ag are objects of Perv(ffl%)l,
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Proof. Evidently, we have:
o = (o) (IC g )-
We claim that the morphism i is affine. Clearly, this would imply the proposition. To

simplify the notation we will assume that 7 = 0; the proof in the general case is the
same.

For an element w € W we can find a weight A and B-stable subspaces
VA C Vv,
with dim(V,}/'V2) = 1, such that a point of G/B~, thought of as a quotient line
¢* «— V, belongs to B -w - B~ /B~ if and only if the composition
WA LA
is zero, and V) — V* — ¢* is non-zero.

Then, LBuny -, as a substack of ISOBun N—, corresponds to those x*, for which the
map

(38) (Vi)pen = (Vi )e — 0 = C
is zero, and
(39) (Vi)po. = (Viy)e — 0y = C

is non-zero. Note that (V) , and (V) ,
a part of the data of a point of éome is the reduction of the fiber Pg, of Pg at
to B.

Hence, the closure of {Em]\,f is contained in the closed sub-stack of Qom]\p,
consisting of all those points, for which the composition in (38) vanishes. The locus of

non-vanishing of (39) is the complement to a Cartier divisor in this closed substack.
O

make sense as subspaces of (Vgﬁ‘G)x, since

4.4.6. We will work with the abelian category Perv (fﬂ%)l ® and its derived category,
denoted D(F1% )",
By Proposition 4.2.9, for F1,Fs € Perv(&"l%)lo,

Ext! )10(3'1,3'2) ~ El’t}om]\;f (351,3'2)7“,

Perv(f}"l%
where the subscript 1" stands for the T-equivariant category. Hence, the map

El‘tie (351,3'2) — Emt?Ome (3'1,352)7“

rv(g1% )0
in injective.

i From Corollary 4.2.13, and using the fact that each {bo Buny is contractible, we
obtain:

Corollary 4.4.7. E:Etip °°)10 (Va, Ay) =0 fori=1,2 and any 0, 0" € Wys.

erv(i?l_f
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Remark. ;From Corollary 4.4.7 one can formally deduce that Ext sor o Vi, Agr)
Perv (1% )1

vanishes for all 4 > 0 and any @, W € Wes. More generally, for F € Perv (fﬂ%)lo,

i (10
Ext )IO(V@,?) ~ HY(L Buny, T, -

Perv (3"1%
Note that by Proposition 4.2.3, the !-restriction of any F € Perv (971%)[0 to {I}O Buny is

a complex with constant cohomologies. Since {DO Buny is contractible, H '({DO Buny,C) ~
C, so, the above expression for Ext" amounts to taking stalks of F on the stratum
I Bun

w N-

4.4.8. The baby Whittaker case. Let Perv(l Buny- )Y ¥ be the category of (N~,)-
equivariant perverse sheaves on ! Buny-. We introduce the category

Perv (?Z%)Ii’w C Perv(!_Buny- IN= >

as the full subcategory, consisting of objects, which belong to Perv (3’"1 %)Gk, k=1,

when regarded merely as objects of Perv(l Buny-). This category is stable under
extensions by Proposition 4.2.9.
By Proposition 4.2.3, we can produce objects in Perv (?ZT)FW, starting from objects

of Perv(G/B~)N ¥, We will denote by g /B~ the unique irreducible in the latter
category, which corresponds to g, p under
Perv(G/B™)N "% ~ Perv(G/B)N .
For v € [X, set
ICY := (o)1 (Y- MIC1y),
and
VY = ()5~ BICLy), AL = (i5). (Y /p- BICiy).

Since the embedding of the corresponding locally closed subset into LBun - is affine
(cf. the proof of Proposition 4.4.4), both Vg and Ag are perverse sheaves, and hence,

by Proposition 4.2.3, are objects of Perv(&"l%)r’w. In Sect. 5.3.3 we will prove the
following:

Theorem 4.4.9. The canonical maps ng — ICg — Ag is are isomorphisms.

Thus, the extension of ¥q/p gICD%N, under i is clean, and V:f ~ Ag is irre-

ducible. Hence, the category Perv (fﬂ %)I ~¥ is semi-simple and equivalent to 7 -mod.
4.4.10. Let us denote by
AV!,N*,@ZJaAV!,N*,w : D(éOBUIle) — D(éoBllIle)Ii’w

the functors, which are left and right adjoint, respectively, to D(}, Buny- )/ ¥ —
D(%.Buny-). As in Proposition 2.2.5 we obtain:
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Lemma 4.4.11. There exists an isomorphism of functors

Av) - [~ dim(n)] — Av, N p[dim(n)]

|D(£BunN,) |D(£BunN7)'

Moreover, the resulting functor Avy— D Buny-) — D(LBuny- ). ¥ is ezact.

Let us call an object of Perv (fﬂ %)I ’ partially integrable if all of its irreducible sub-
quotients are of the form 1C,.;, w # wg. Thus, the only irreducibles, that are not
partially integrable are 1C,,.;. Let us denote by f Perv(ff"l §)IO the resulting quotient
abelian category.

The following is parallel to Proposition 2.2.7.

Proposition 4.4.12.
(1) The functor
Avi oy Perv(&"l%)lo — Perv(i}"l%)r’w
factors through fPerv (971%)[0.
(2) The resulting functor

fPerv(rJ'"l%)IO — Perv(i}"l%)r’d’
18 faithful.

Proof. To prove the first statement we have to show that Av;- ,(ICy.5) = 0 for w #
wg. This is nearly evident: such an irreducible is a pull-back from the quotient stack
P\!.Buny-, where P, is some sub-minimal parabolic in G. Our assertion follows from
the fact that the direct image of ¢ p under G/B — G/ P, vanishes.

To prove the second statement, it suffices to show that

Avy- 5 (1ICy0.5) =~ 1CY.

We know that the left-hand side is a perverse sheaf, and the isomorphism over the open
part of the support, namely !Buny-, is evident. The fact that the left-hand side is a

v
Goresky-MacPherson extension from this sub-stack follows from the exactness of the

functor Avy- , and the fact that it commutes with all i, and EL,
0
Corollary 4.4.13.
(1) The kernel of V.o — 1Cuy.ir is partially integrable.
(2) 1Cyy.5 s the cosocle of Ay and socle of V.
(3) For any w € W, 1Cy,.5 is the only non-partially integrable constituent of V.;.

Proof. Evidently, we have

AV (Vi) = V.
Combining this with Proposition 4.4.12 and Theorem 4.4.9, we arrive to the assertion
of point (1). Point (3) follows from point (1) by (37). Finally, point (2) follows from

point (1) in the same way as in the proof of Proposition 2.3.2.
O
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We will now introduce one more object of Perv (fﬂ %)I ’. For v € A set

H! U= (E,})! (Eglclém]\r7) and H*’I; = (ED)*<E®IC£WN,>’

)

where E is the perverse sheaf on N\G/B~, corresponding to the same-named perverse
sheaf on G/B.

Theorem 4.4.14. The canonical map I1, ;, — 1L, ; is an isomorphism.

Proof. Consider the convolution with Z as a functor Perv (rﬂ%)l — Perv (?l%)lo. As
usual, this functor annihilates all partially integrable objects.
Evidently,
II ; ~ E% Vs and Il >~ Ex Ay i

Our assertion follows now from Corollary 4.4.13, which implies that the cone of the
map V.o — A, is partially integrable.
O

4.4.15. We will now establish the following fact, parallel to Proposition 3.2.6(2):
Proposition 4.4.16. For v € A there exists a non-zero map
Ayov — 1Ci2p,
where 1Cy_g5 € Perv(?l%)GHt” is thought of as an object of Perv(ff"l%)l.
Proof. As in the proof of Proposition 2.3.4, we have the functor
Avig/p 1 D(f,Buny-) — D(sBuny-),
left adjoint to the forgetful functor. By definition,
(40) Homperv (rﬂ%)I(AwO.g, 1ICy—2p) HomD(oomN,)(AV!,G/B(Awo~D)= 1Co—2p)-
However, since G/B is proper,
Avig/B(Awg i) = (ED)*(ICDmN, )[dim(n)].

Hence, the assertion of the proposition follows from Corollary 4.3.5.

5. CONVOLUTION

5.1. Definition of convolution.

5.1.1. Consider the Hecke stack for G at z:

— —

h h
Bung << Ha —% Bung,
and for two integers ki, ko let khk?fHG,x denote its base change with respect to

k1 Bung x*2 Bung — Bung x Bung .
G G G G

By a slight abuse of notation we will continue to denote by h¢, hg the projections of
klv’”ﬂ{gm on ® Bung and *2 Bung, respectively.
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We can regard klvkzﬂg,w over "2 Bung as the space associated with the canonical
G*2-torsor G2 over *2 Bung and the G*2-space G((t))/G*:

ki ko Ky G2 ko
k2906, ~ G((1) /G X ke,

We also have a symmetric picture:

Ky k ke OF ok
VR HG . ~ G((t)/G™ x Gt
Recall now that there exists a canonical equivalence of derived categories
8= 8% : D, (G((1))/G™) = Dy (G((1))/G™).

It is defined as follows.

First of all, it is clear that G¥.-invariant sub-schemes of G((t))/G*? are in bijection
with G*2-invariant sub-schemes in G*\G((t)). For 8§ € Dgr, (G((t))/G*2), let Y be the
corresponding finite-dimensional sub-scheme of G¥*\G((t)). There exists an integer
ki >> 0, such that if we denote by Y the preimage of Y in G*¥1\G((t)), the map
Y — G((t))/G* is well-defined. The pull-back 8’ of § to Y is an G** /G¥1-equivariant,
and, hence, descends to a well-defined G*2-equivariant object of D(G*1\G((t))).

Finally, the desired functor is obtained by applying the inversion on G((t)).

5.1.2.  Asin [BG] we have a commutative diagram, in which both squares are Cartesian

— —
! !

k G kik Gk
seBuny - ——— "R Hg n- . —— ZBuny-

d l d

— —

M Bung S kukag(g, | 6, k2 By .
For a complex J on k2Buny - and a GM-equivariant complex § on G((t))/G*? let
8P XF be the corresponding complex on kl’kzﬂ{G,Nix. We set
S5 F = (h)(SPRF), SxF := (h's)(8 KF) € D("' Buny_ ).

Evidently, when k; = ko = k, and 8 is supported on G[[t]]/G* c G((t))/G*, we
arrive to the functors discussed in Sect. 4.4.1.

The following is straightforward from the definitions:
Lemma 5.1.3. For 8§ € Dgr, (G((t))/G*2) the functor
F s § x5 : D(2Buny-) — D(%:Buny-)
1s the left adjoint of
F — D(8) xF : D Buny-) — D(22Buny-).

The above picture admits the following variants. First, we can replace the equivari-
ance condition on 8§ € D<G((t))/Gk2> with respect to GF1 by that of 19, I or (I7,%)).
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In the case the target will be the corresponding category D(X Buny- ), D( Buny-) or
D(L, Buny- )V .

Secondly, instead D(G((t))/sz) we can consider D(Flg) or D(Grg). We obtain the
convolution functors
D(Flg)¢" xD(L Buny-) — D(*:.Buny-) and D(Grg)®" xD(sBuny-) — D(* Buny-).

In both these cases, the *-convolution coincides with the !-convolution, since Flg
and Grg are ind-proper. We will denote the resulting functor simply by x. Here again,
the equivariance condition with respect to G* can be replaced by any of I°-, I- or
(I~ ,%)-equivariance conditions.

5.1.4. We will now show that the convolution functors essentially preserve our category

Perv(F172).
Proposition 5.1.5. If F € Perv (i}"l%)Gk2 , then the perverse cohomologies of both SxF
| oo
and 8 x F belong to Perv(i}"l?)le.
The rest of this subsection is devoted to the proof of this proposition. First, let us

notice that if F satisfies condition (1), then so do the complexes (). (8P XF) and

(R (8P gﬂ-‘) Hence, by Lemma 4.2.5 and Proposition 4.2.6, these complexes satisfy
the weak factorization property. Hence, to show that their perverse cohomologies satisfy
the full factorization property, it is enough to show that their pull-backs to

~ ~ ~ o ~ ~ ~
(Zuz—ul % 1;(1)2_#1) % (Xuz—m % OOXul) .
XA2—i1 % o, X disj

can be written as extensions of complexes, each of which has the form ICgyu,—4; XF,
where J7 is some complex on K121,

Let us denote by Y# the Cartesian product
kigh  x kukegio .
M Bun,,
As in Lemma 4.1.5, we have a canonical isomorphism
yﬁz % (;{ﬁZ—ﬁl % ooX[”) ~ (ZﬂQ—[Ll % 9;11) % <)O([L2—[L1 % ooX[“) )
o XF2 disj X2 x o XF1 disj
We claim that the pull-back under
yﬁz % <)O([L2—[L1 % ooX[”) N 9;12 N kl’kzg'CGNm
oo X 2 disj Y
of 8P XF is an extension of complexes, each of which has the form ICyu, -4, XF” | where

F" is some complex on Y. This would clearly imply our assertion.

Note that Y# can be represented as a union of locally closed sub-stacks ;Y# for v € A,
where a point (Pg, {x*}, {x»}) belongs to ;Y# if and only if each x>~ has a pole of
order (\,7) at x.
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Note that we have a natural map ;Y* — ’ggzﬂ” , that covers the map

-
1 k1k ko
hg: "™ Hag Nz — seBuny-.

Moreover, the diagram

o
YRz <Xﬂ2—f“ % ooX‘h) , iy
oo X 12 disj
(o]
kagfiat? i (X/lz—/h % OOXﬂ1+I7> gia—fin y ka g+
oo X P2+ disj

is commutative. Hence, our assertion follows from condition (2) imposed on F.

It remains to show that the perverse cohomologies of SxF and Siff satisfy condition
(3). Since we have to check an equivariance condition with respect to a unipotent
group-scheme, it is enough to show that their pull-backs to ’;gzﬂ can be written as
extensions of complxes satisfying this equivariance condition. This follows in the same
way as above, by sub-dividing the stack Y# into the locally closed substacks ;Y*.

5.2. Exactness and smallness.

5.2.1. Consider the convolution functor
D(Grg)Gk X Perv(i}"l%)GHt” — D(* Buny-).

Since Perv(?l%)GHt” is semi-simple, it is enough to evaluate the above functor on
the objects of the form 1C;, 7 € A.

Theorem 5.2.2. The functor
§—8%I1C; : D(Grg)Gk — D(* Buny-).
18 exact.

Proof. Since the situation is self-dual with respect to the Verdier duality, it is sufficient
to show that for 8§ € Perv(Grg)Gk, the convolution § x IC; is supported in non-positive
cohomological degrees. For that it is sufficient to show that EZ(S *1Cy) is supported in
non-positive cohomological degrees for every i € A.

Consider the preimage (h’G)_1 (EBuan) C k’OfHG, N,z- It admits a decomposition
into locally closed pieces

—

(41) (ho) ™ (§Bumy- ) 1 (hi) ™ (wBumy- ) 05036y,

for i/ € A and A € AT, where k’oﬂ{é’ N,z 1s the preimage of the corresponding locally
closed sub-stack in Hg .

The statement of the theorem would follow once we prove the following:
(1) The dimension of fibers of the map

—

ne: ()™ (FBuny- ) N (h) ™ (wBuny- ) 0599y, — FBumy-
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is < (i — i+ X, p).
(2) The *-restriction of $%? KIC,, to (Z’G)_1 (EBun]\p) N (Z’G)_1 (WBuan) ﬁk’of]{é‘;’Nw
lives in the cohomological degrees < — (i — i + A, p).

The first assertion follows from the identification of the locally closed substack from

(41), projecting to EBuan by means of hg,, with

> N’X[[tﬂ

(42) (GranN=(@®)- (=) % N,

where EN is the N~ [[t]]-torsor over EBun - introduced before.

To prove the second assertion let us view the locally closed sub-stack of (41) pro-
jecting to yBuny- by means of hi,; it identifies with

_ —wo (X _ _ _\ NI
Pt (Grg™ Y ONT(@) - (W =) % N,

where py, is the projection g((t))/Gk — Grg.
The *-restriction of $°? KIC; to it identifies with
) RIC,|

sop ) —
it (Gréwo(” AN ((£))- (i — 1) p/ BN =

Hence, it is enough to show that the *-restriction of 8 to
— —wo(A - . .
Py (Grg" ™ N (1) - (7 — )
lives in the cohomological degrees < —(ii/ — i + A, p).

First, the restriction to pgl(Gréwo(A)) lives in non-positive degrees, since 8 was as-

sumed perverse. By assumption, this complex is G[[t]]-equivariant, and hence, uni-

0(A)

versally locally acyclic over Gr,”*""”, since the latter is a G[[t]|-homogeneous space.

Since

codim (Grg™ ™ AN~ (1)) - (i — 1), Grg™N) > (i — i+ A, p),
d GGO()\)N / GGO()\) / /\

our assertion follows.
O

5.2.3. Convolution in the spherical case. We will now study a particular case of the
above situation, when the functor we consider is:

Sphe; x Perv(F1% )Gl — pery (377 ) I,
Proposition 5.2.4. For V € Rep(G) and v € A, there exists a canonical isomorphism

V % |C,; ~ @ |C,)+[L ® K([L)
f
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Moreover, for V,U € Rep(G), the diagram

(UxV)*1Cy — O (U I1Coy ) @ V(1)
/J,,
SIC @ U V)(i) —— @ ICopppm @U(E") @ V(i)
K L
commutes.

Before giving the proof let us recall that the for V € Rep(G) and the corresponding
object V € Sphg, we have a canonical isomorphism

(43) V() = Hy 20 (N7((0) - i V()5 ):

Proof. Note first that the result of the convolution VxIC; is an object of Perv (fﬂ%)G“t”,

and hence, is semi-simple. (Alternatively, semi-simplicity follows from the decomposi-

tion theorem, since every V € Sph; is a direct sum of intersection cohomology sheaves.)
By the proof of Theorem 5.2.2,

Hom(1Cye V 1Cy) = Hy 0 (N=((1)) - . Vin- (0 )-

which is exactly the expression that appears in (43).
The second assertion of the proposition follows from the definition of the structure
of the tensor functor on V +— V : Rep(G) — Sphg, cf. [MV] or [BG1].
O

The commutativity of the following two diagrams also follows from (43):

IC}\,GrG *|C,; E— IC}\,GrG *Ic;l,GrG *Ic—wo(ﬂ)ﬁrc *|C,;

(1) | |

ICD+5\ — IC}\,GrG *IC,&,GrG *lC,;_[L,

where the left vertical arrow comes from taking the direct summand corresponding to
K)‘(;\), and the right vertical arrow comes from taking the summand corresponding to
Vwold) (—p).

For the following diagram V' is an object of Rep(é’) and X is a coweight large com-
pared to V:

V*ICy - (IC_wO(;\)’GrG *IC;\’GrG *V) % 1Cy
(45) GMQ 1Coyp ® V(i) @/119 Ic—wo(ﬂ),GrG *ICS\-HLGrG *Cy @ V(1)

| |

% 1Cop @ V(1) —— % IC—wo(}\),GrG *IC5\+D+p ® V(f1).

5.3. Convolution with Perv(Grg)?.
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5.3.1.  We will now consider the convolution functor
Perve (Fle) x Perv(F1% ) — perv(31%) 1.
Recall the objects L% € Perv(Grg)! defined for w € W We will prove:
Theorem 5.3.2. If LY =1C, 5 g, then

L% %1Cy ~1C,, 54

The rest of this sub-section is devoted to the proof of this theorem. We will retrace

the argument proving Theorem 5.2.2 and show that the map defining L x1C;; is small
(vs. semi-small).

First, to calculate the top (=0-th) cohomology of L* xIC; we only need to consider
the locally closed sub-stack of ! 709{(;7 N- o isomorphic to

N=([)
w X DINv

and the constant perverse sheaf on it, where Qy is the open G[[t]]-orbit in the support

of (L¥)? on Flg. Its intersection with the preimage of £, ;Buny- under hg can be

described as follows.
Note that the pull-back {U,.ﬂBuan x N of the N~ [[t]]-torsor ;N to {U,,ﬂBuan

T Bun

f N
admits a reduction to the subgroup N~[[t]] N Ad(,y-1(I). Then the above intersection
identifies with the total space of the bundle associated with the N~[[t]] N Ad (-1 (1)-
space

(46) N7((1) - (i — ) 0 (Adguny1 (1) - () w(3)) € N((1) - (3~ ) N Gy
Evidently, when i = A + 7 and w' = w the above intersection is the point-scheme.

This means that ICw.(j\ +5) indeed appears as a direct summand in the convolution

L% %1Cy. Tt remains to show that if i # A+ o or w’ # w, then the scheme in (46) is of
dimension strictly less than (0 — i + A, p).

We will deduce this from Theorem 1.3.5. Let us take fi; to be a large dominant
coweight and set 71 = fi; + 1 — 7. We will show that if the dimension of (46) violated
the above inequality, the perverse sheaf 1C,, ., qr, would appear as a direct summand
of IC,, 5 Gre *1Ci1,Grg- For that end, it is sufficient to show that the fiber of

(1 (w- X)) « Grit

over the point w’ - 1 is of dimension > (7 — i + A, p). We claim that the above fiber
contains a subscheme is isomorphic to the scheme (46).
Consider the orbit of the group Ad,s N~ ((t)) passing through w' -4 € Grg. Its

preimage in (I (w - 5\)) * Gr’g; is the union over parameters j of the schemes

(a7
(A N0 (' 20) 0 (1 (w0 ) e ((Adur N (0 '+ (1 = 59))) 1 Gy,
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each of which is fibered over
(48) (Adw, N=((t)) - (' - pg)) N (1 (w - X))
with a typical fiber
(Adw/ N=((®) - (w' - (51 — p{))) NGl .
Let us take 7y = 4 — 3. We claim that that the intersection of (47) with the

preimage of the point w’ - 7y in (I- (w - 5\)) * Gré} surjects onto the scheme in (48).

This would imply our assertion, since the schemes (46) and (48) are isomorphic for the
above choice of 7.

This amounts to showing that the subscheme
(=i (@)™ ((Adu N7((®)) - (' - (
—wo(fi1)

is contained in Grg .
Let N7 be the group-subscheme of N~((t)), such that

(Adw N7((0) - (@~ (i~ ) 0 (I (- 3)

— ) N (I (w- )

=«

is contained in
(Adw,(N’-’) (- (i — p))) A(I-(w- 1)
We have to show that

(=) - N"- (3= 9) € Grg"™™,
which is equivalent to

Ad_y, N7 - (—fiy) C Grg"oW)
However, the latter containment is valid, whenever 7 is dominant enough so that
Ad_y (N?) c N7[[t]].
Remark. Let us note that the fiber of (I (w - 5\)) * Grél over w' - 7 is in fact entirely

contained in the subscheme (47) with 7] = 4 — i1, and it maps to the scheme (48)
isomorphically.

To prove the first assertion note that there are only finitely many s, for which the
base (48) is non-empty. For any ] other than ©; — fi; the subscheme

(=01 (@)™ - (Adw N((®) - (' 7)) O (1 - (w- )

wo (1)

will have an empty intersection with Grg , because eventually

(Ady (N7) - (5 — 1)) NG ™™ =,

The second assertion is evident, since every fiber of m : Grgx Grg — Grg embeds
into the base Grg.
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5.3.3. The baby Whittaker case. Our present goal is to prove Theorem 4.4.9. By Verdier
duality, it is sufficient to show that the map

Vg — |Cg

is an isomorphism. Suppose it is not, and let us look at the quotient perverse sheaf;
let &/ be the maximal element of A, such that this quotient is non-zero when restricted
to L, Buny-. Then this restriction (either *- or !-) is a perverse sheaf, and its further
restriction onto the locally closed sub-stack of L, Buny- equal to (evy ) NN~ - wp), is
a local system.

Hence, we deduce that the Euler characteristic of the *-restriction of ICg to some
(evy ) Y (N~ -wq) with /' # i is non-zero. We are going to show that this is impossible
by comparing the present situation with the one for Perv(Grg)! ¥.

Let us recall that for any i € AT, the perverse sheaf ICérG *1Cj ar 1s irreducible
and is isomorphic to the clean extension of the character sheaf on the I~ -orbit of the
point wq - (1 + p') € Grg, by Theorem 2.2.2.

We have the convolution functor

Perv(Gre)! ¥ x Perv (312 ) ¢ — pery (31%) 17

Theorem 5.3.4. ICérG *Cy = ICg}erv,.

We omit the proof, since it essentially repeats the proof of Theorem 5.3.2, where

instead of the fact that L x IC; qr, is irreducible for g € AT, we use the above
mentioned fact about IC&G *1Cp.Gre € Perv(Grg)! Y.

We claim that the fiber of ICérG *IC; at a point of (evy) (N~ -wp) can be written

as an extension of certain complexes K,;~, and the fiber of ICérG *1Cj, are; at a point

of I7 - (wo- (@' +p)) for v — V' = i — i can be written as an exetension of the same
complexes.
This would imply our assertion about Euler characteristics, since the fibers of the

convolution IC&G *1Cj qre; over I~ - (wo - (' 4 p')) are zero unless /i’ = fi by cleanness.

For " the complex K is defined as the fiber of the direct image under

—

ey s (hly)™ (;,Buan) N (h’G)—l(D,,BuW) NOHE By

of the *-restriction of IC&G gIC,; to the above substack.
Hence, K~ is the cohomology with compact supports along the scheme

N((t)) -wo- (7 —"yN T~ - (wy - §) C Gr,

of the complex equal to the tensor product of the character sheaf along I~ - (wq - p)
and the constant complex equal to the stalk of IC; on v Bunp-.

Let us now calculate the fiber of ICérG *1C arp, at a point of I~ - (wg - ') for fi large
and v — V' = i — fi’. For that we will intersect the fiber of the convolution diagram
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over wy - fi’ with the subschemes of the form
<I_ - (wy - [))) *Grg/ .
As we saw above, each of these intersections is isomorphic to
N((t) - wo - (' = @") NI~ - (wo - p) C Grfy.
For each such " the complex that we have to integrate is the tensor product of the
character sheaf along I~ - (wp - ) and the stalk of ICj, G, at Grf, .

We set up the bijection between 7 and ji” so that v — ' = ji” — /. Our as-
sertion follows from the fact that for A small comared with i and & the stalk of ICy
on ,_ 5 Buny- is isomorphic to the stalk of IC; a,, on ICﬂ_ X Gre This follows by
combining [FFKM, BFGM] and [Lu, Soe].

5.4. Action of convolution on standard objects.
5.4.1. We will now prove the following assertion, parallel to Corollary 3.2.2:
Proposition 5.4.2. If X is dominant there is a canonical isomorphism
Jia* Ve = V5.
Proof. Using Proposition 5.1.5, it is sufficient to show that the stalk of Jix* Vi is 0 on

any 113' Buny for @ # X + o, and that it is canonically C the latter case. This follows
in a rather straightforward way from the definition of convolution.
Consider the stack

(he)™ (o Bumy- ) 0 (h) ™ (hsBuny- ) N3G -

projecting to {U,_D,Bun N- by means of hy,. In the above formula 9{2‘;7 Nz 18 the locally
closed substack of 1/ J{g N- o corresponding to the I-orbit I - A C Flg.

The fiber of the above stack over a point of {U,,D,Bun N- 1s isomorphic to
(49) (N_((t)) (7 D) w—l) N ((w')-l I x) C Flg.

Set w = 1, and we claim that the above intersection is empty unless 7 = 7 + A and
w’ = 1, and that in the latter case, this is a point-scheme.

The latter assertion is evident. To prove the first one, we will use the following:
Lemma 5.4.3. For A dominant,

NT((1)) - B[[t] > Adx(I) < BI[t]} - N™((#))-
Using the lemma, it is enough to show that

(w7 =) N=(@)) 0 (NF((®) - }) € G()

is non-empty only if w' = 1 and ' — 7 = X, which is evident from the Bruhat decom-
position.
]
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5.4.4.  Let us now exhibit a compatibility relation between the isomorphisms of Propo-
sition 5.4.2 and Proposition 5.2.4. Namely, we claim that for A € A" the diagrams

ICGrg,j\*ICD m— j*’j\*IC,; Em— j*’j\*A,;

) . .

. —— A

I U+ 2%
and
j*75\ *1Cy —— j*j\ * ICp,GrG *Ic—wo(/l),GrG *ICy
(51) j*,j\ * Ay j*j\ * ICﬁ,GrG *ICD—[L
A —

DADY T ¥ 1Co—pas
are commutative. This follows from the definition of the isomorphisms in both cases.

Note that Proposition 5.4.2 implies that for 7 dominant

=i % Vg 22 Voo (o —wo () 5

and hence

(52) j*J, * Vwo,,;/ ~ VWO'(D"FUJO(D))'
Consider now the morphism

(53) 1Co = Vag-(r125)

obtained by Verdier duality from Sect. 4.4.15. By construction, the space of such
morphisms for every © is a 1-dimensional vector space, canonically independent of .
From the construction one infers the following;:

Lemma 5.4.5. For v € A, \, i € At the diagrams

- -

IGJ?ICD—i_I)/ ®K>\(Dl) - ICD+wo(5\) - VwO'(D+2ﬁ+wo(5\))

and
j*’j\*IC,; _ j*,j\*Icﬂ,GrG*IC—wo(ﬂ),GrG *1C;
j*75\ * Vwo'(’)+2ﬁ) ]*,5\ * IC[L,GTG *ICD—wO(p)
\Y% —

wo- (4 2p+wo (1) Tt * 1 Comwo()

are commutative.
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6. THE EQUIVALENCE

6.1. The functor.

6.1.1. Let 8 be an object of Hecke(Grg, G)Gk. We attach to it a covariant functor on
Perv (rﬂ%)ck as follows. To an object F € Perv (rﬂ%)ck we assign the set of collections

of morphisms 85 x IC5 — F, such that for any V' € Rep(G) and fi € A, the diagram

85 xVxICs_, ® (V(1)* —— <8;_ﬂ®z(n>>*IC;_p®<K(ﬂ>)*

l

8, %1C, V(i) © (V(7)" St 10k,
$5 % 1C; — 5

[ ]
commutes, where the upper horizontal arrow is given by the Hecke morphism for 8,
and the left vertical arrow by Proposition 5.2.4.

It is easy to see that the above functor is representable by
[ ] [ ]
co—eq( O S5 xVxICy_, ® V()" = &8y * IC,;),
AV v
where the two arrows correspond to the two circuits of the above commutative diagram.

We denote the resulting functor Hecke(Grg, G)Gk — Perv (rﬂ%)ck by Conviieke By

Hecke

construction, Conv is right-exact.

Proposition 6.1.2. For § = 8xRpx={j} € Hecke(Gra, G)" the object Convieeke(8) is
canonically isomorphic to 8 x 1C_.

[ ] [ ]
Proof. For a morphism Conv®€(8) — F, by taking its component S_pxICy —F
we obtain a map 8§ xIC_; — JF, since

S_ji~ 8% Ré{ﬂ}_ﬂ ~ 8% (Ré)o,
and it contains § as a direct summand.

Vice versa, having a map S x IC_; — J, for every V € Rep(G) and A we define a
map 5
(8*\7@[*(/\—1—;2)) *xIC — F
by
(8*xVRV*(A+ 1)) *I1C; = 8xIC_; @V (-A— ) @ V(A + 1) = §xIC_;; — F.
The fact that the resulting system of maps satisfies the defining condition follows

from the second assertion in Proposition 5.2.4.
O
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We also have the following assertion that follows from Proposition 5.2.4(2):

Lemma 6.1.3. For 8 € Hecke(GrG,G)Glc and fi € A,

ConvHeeke(§) ~ co-eq (e $1x V21C, @ V(0)* = 8, %1C;,).

6.1.4. We propose the following:
Conjecture 6.1.5. The functor

® ~ _ oo
Convieek® : Hecke(Gre, &) — Perv(fr"l?)Glc
1s exact and fully-faithful.

In fact, we think that Convi®® is very close to be an equivalence of categories. Un-
fortunately, we cannot formulate a precise conjecture, due to our lack of understanding
of Noetherian properties of both categories. In any case, we think that one can express

=) ; ® - .
Perv (fﬂ?)Gk completely in terms of Hecke(Grg, G)Gk, which would then supply a local
(in particular, independent of the global curve X') description of Perv (9"l %)Gk
In what follows we are going to discuss a version of the above conjecture, where

instead of the level GF we take I°. In this case it would be possible to formulate and
prove a more precise result.

Theorem 6.1.6. The functor

4 ~ _ o)
Convie*® : Hecke(Grg, G)T" — Perv(F17)1"
1s exact, and it defines an equivalence between the sub-categories of Artinian objects on
both sides.

Since the subcategory Hecke(Gr(;,G)fT,t of Artinian objects in Hecke(Grg,é)IO is

equivalent to flg -mody, as a corollary we obtain:

Theorem 6.1.7. The category flg -mody is equivalent to the category of Artinian objects
n Perv(&"lT)Io
6.1.8. Here we would like to add the following observation.

As we saw above, the category Hecke(Gr(;, G)IO is acted on by the group W,s; by
self-equivalences: the elements of A act by shlftlng the grading, and w € W by the

twisting functors S — wS (which on the level of - mod correspond to the functors
Fw). Evidently, these functors preserve the subcategory Hecke(Grg, G) ‘Art» and, hence,
the carry over to the category of Artinian objects in Perv (rﬂ%)l ’.

Let us describe how these functors act on the irreducibles of Perv(ff"l%)lo. For
w e Wlet LY =1IC, 5 g, be the corresponding "restricted” irreducible in Perv(Grg)!.
By Theorem 5.3.2 and Proposition 6.1.2,

(54) ConvHeeke (LY« R {i}) = 1C,, (-
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Hence,
(ICw-ﬂ) ﬂ} = lcw (—p)
and
(55) Fw/ (Icw(S\—/l)> ~ |Cw(5\_w/(ﬂ))

Recall that the C-linearized Grothendieck group of the category of Artinian objects in
Perv (rﬂ%)l * identifies with Lusztig’s periodic module over the affine Hecke algebra (cf.
[FFKM])? and hence, also with the space of Iwahori-invariant functions in the Schwarz
space of [BK]. Equation (55) implies that the maps on the Grothendieck group, induced
by the functors F,,, are equal to the Fourier transform operators, introduced in [BK].

The rest of the paper is devoted to the proof of Theorem 6.1.6.
6.2. Proof of the equivalence.

6.2.1. As a first step we prove the following:

Proposition 6.2.2. The functor

Convie®® : Hecke(Grg, G)T" — Perv(ﬂ-‘l%)lo
18 exact.

The present subsection is devoted to the proof of this proposition.

Since Hecke(Grg, G)IO is the ind-completion of the subcategory of its Artinian ob-

o ~
jects, it is sufficient to prove that Conv'*® restricted to Hecke(Grg, G)fﬁ is exact.
Let

0—>é1—>é2—>é—>0

o ~
be a short exact sequence of objects of Hecke(Gr(;,G)ﬁ)T,t. We have to show that

L] L] °
Conv'ledke(8,) — Convieke(8,) is injective. For that we may assume that § is simple.

By Sect. 1.3.8, § is then isomorphic to 8 x R={ji} for § € Perv(Grg)IO.

We can find an object 8 € Perv(Gr(;)IO with a surjection 8’ — 8, and a map
§ — (82)—p in Perv(Grg)!”, such that the diagram

9For this to be formally true we have to pass to the category of mixed D-modules of Hodge-Tate
type in Perv(iﬂ%)lo
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° L] L]
is commutative. Hence, we obtain a map 8’ x Rx{fi} — 82. Let 8, be the Cartesian

product of 8 and 8’ x Rx{f1} over 8 x R~{fi}. We have a commutative diagram:

0 0
0 él ég —_— 8*3.2(;{,&} — 0
id
0 él é/2 —_— S/*ié{ﬂ} — 0

8" % Re{i) —2 8" R (i)

0 0.
It is enough to show that the map

Conv'ecke (él @ 8" % f}.zé{ﬂ}) ., CopyHecke (éé)

[ ] [ ] L]
is injective. However, by construction, 8, splits as a direct sum 8; &8« R={f1}. Hence,
it is enough to show that the map

ConvHeke (8" x R - {1}) — Conve™® (8 x R:{ji})
is injective. But the latter results from Proposition 6.1.2 combined with Theorem 5.2.2,
since the map in question comes from a map 8" — &' in Perv(Grg)! ‘.

6.2.3. Recall that the Verdier duality functor D is defined on Hecke(Grg, G)ﬁ)ﬁ. In
this subsection we will prove the following:

Hecke

Proposition 6.2.4. The functor Conv commutes with the Verdier duality.

Recall that if § € Hecke(Grg, G)fﬁ is an object represented as

coker <81 * Ré{ﬂl} — 82 * Ré{ﬂz}),

then D(8) is described as follows:
The map 81 xRpz{fi1} — SoxRiz{fiz} comes from a map o : §; — Sox VRV *(fig — fi1)

defined for some V' € Rep(G). By adjunction, we have a map
81 xD(VP) @ V(fiy — f12) — 8a,
and applying the Verdier duality we obtain a map

D(a) : D(8s) — D(81) *x VP © V*(jiz — jir).
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Recall that the functor V — D(V) corresponds on the level of Rep(G) to the
dualization functor V +— V* whereas V — ID(V) corresponds to the contragredient
duality V +— VV. In particular, V(1) ~ VP(—1).

We then obtain a morphism

D(82) * Rey{ji} — D(S1) * Rep{jin},

whose kernel ia D(8).

For § as above, by Proposition 6.1.2, ConVHCCkC(S) ~ coker((3), where 3 is the map
81 * |C_p1 — (82 * V% |C_[L1) ®K*([L2 — /21) —
8o % IC_ji, @ V(fir — fi2) @ V*(fia — f11) — Sax 1C_p,.

By Proposition 6.2.2, ConVHeCke(]D(é)) ~ ker(y), where  is the map
D(82) * 1C_j, — (D(81) * VP % I1C_p,) @ V*(fi — f11) —
D(81) x 1IC_p, @ VP(fiz — fi1) @ V*(fiz — f11) — D(81) x 1C_, .

To prove the proposition it remains to see that the morphisms § and ~ are trans-
formed into one-another by Verdier duaility. This is evident when V is the trivial
representation. By transitivity, this reduces the assertion to the case when §; ~
Sax V@ V*(fig — fir).

In the latter case, both arrows D(3) and v are obtained from the corresponding
arrows for 8y replaced by 61 .ar, by convolution with 8. The case 83 = d1,Gr, Is a
straightforward verification.

6.2.5. We will now state a crucial result, from which we will deduce Theorem 6.1.6.

Theorem 6.2.6. For w € W and i € A,
Convy'lecke (Mw'ﬂ) ~ Ay

We will now deduce Theorem 6.1.6 from Theorem 6.2.6. Consider now the following
general set-up:

Let C be an abelian Artinian category; let A be the set parametrizing its irreducibles;
for a € A we will denote by L% the corresponding object. Assume also that for each
a € A there exist objects V® and A%, such that L% is the cosocle of V¢ and the socle of
A®. Assume, moreover, that Ext!(V* , A%") =0 for i = 1,2, and Hom(V?®,A%") =0
unless @’ = a”, and in the latter case it is 1-dimensional (which implies that any element
in Hom(V?!, A%) factors through L£%).

Let now G; and Gy be two such categories with the same set of irreducibles A. Let
G : C; — €3 be an exact functor, such that G(L]) ~ L4, G(V{) ~ V4, G(A]) ~ Ag.

Lemma 6.2.7. Under the above circumstances, G is an equivalence of categories.

Theorem 6.1.6 follows from this lemma, using Corollary 4.4.7, Lemma 3.2.19, Propo-
sition 6.2.2, (54), Proposition 6.2.6 and Proposition 6.2.4.
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6.2.8. Proof of Lemma 6.2.7. Note first of all that the assumption implies that G is
faithful.

Step 1. For a,a’ € A consider the long exact sequences
0 — Hom(L$, AY) — Hom(V% AY) — Hom(ker(VE — L&), A%) —
Bat' (L8, AY) — Ext'(VE,AL) =0
for i = 1,2. Since Hom(V{, A‘f/) — Hom(V§, Agl) is an isomorphism, comparing the
two, we infer that Ext'(L¢, AY) — Ext'(L%, AY) is injective.
Step 2. Consider now the long exact sequence
0 — Hom(L$,L5) — Hom(L$,AY) — Hom (L5, A /LY) —
Eat'(L4,L1) — Bat' (L, AY) — Eat' (L4, A7 /LT)
for i = 1,2. Hom(L{, A‘f/) — Hom(L$, A%’) is an isomorphism and using Step 1, we
find that Ext'(L§, L) — Eaxt'(L4,L4) is injective.

Step 3. Let F’ be any object of C;. Using Step 3, by induction on the length of F,
we find that the map Hom(L§,F') — Hom(LS,G(F")) is an isomorphism.

Step 4. Returning to the long exact sequence of Step 1, we find that the map
Ext' (L4, AY) — Ext'(LE, AY) is an isomorphism.

Step 5. Again, by induction on the length, using Step 3, we show that the map
Ext'(L$,F) — Ext'(L%,G(F")) is injective.

Step 6. By the exact sequence of Step 2, from Step 4 we find that Ea:tl(L‘f,LCf/) —
Ext'(L£$,L4) is an isomorphism.

Step 7. Let F be an object of Gy, and F’ some other object. By induction on the length
of F, from Step 5 we obtain that Hom(F,F) — Hom(G(F),G(F")) is an isomorphism.

Hence, G is fully-faithful. To finish the proof of the lemma, we have to show that G
induces isomorphsims on the level of Ext!(-,-).

Step 8. By induction on the length of F, from Step 5 and Step 7 we obtain that
Ext (F,9") — Ext'(G(F),G(F")) is injective.

Step 9. For a,a’ € A consider the long exact sequences
.0 = Ext'(VE,AY) — Ext' (ker(VE — L), AY) —
Ext? (L8, AY) — Ext?(VE,AY) =0
for i = 1,2. From Step 8 we infer that Ext?(L§,A}) — Ext?(L$,AY) is injective.
Step 10. Consider the long exact sequence
Ext'(L$, L) — Eat' (L, AY) — Eat' (L, A7 /LY) —
Bat?(L5,05) — Eat? (L5, A7) — Bat(L5, Ay JL1)
By Step 4, Step 8 and Step 9, the map Emt2(L‘f,L‘f,) — E$t2(L§,L‘2’/) is injective.

Step 11. By induction on length, from Step 6, we obtain that Ezt!(L%,F') —
Ext'(L%,G(F")) is an isomorphism.
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Step 12. Again, by induction on the length, from Step 10 and Step 6, we obtain that
the map Ext?(L4,5") — Ext?(L%,G(F)) is injective.

Step 13. Finally, by induction on the length of ¥, from Steps 11 and 12 we infer that
the map Ext'(F,F) — Ext'(G(F),G(F")) is an isomorphism.

6.3. Identification of the image of baby co-Verma modules.

6.3.1. In this subsection we will prove Theorem 6.2.6. Note that it suffices to show
that

Conviedke (M) ~ A,
since all other isomorphisms will then hold by (16), (3.2.2) and (5.4.2).

We construct a map

(56) Convledke () — A
as follows. We need to construct the maps
lim g, sqp* IC_ (0,16 *1C—i — Ao
A
for every fi.
For A € A* as above we have a map

Jup * IC—wO(S\),GrG *C_y ~ ?j*j\ﬂz *1C_ iy @V (D) — Ju Xt * IC_ﬂ_j\ —
Ju s * A_ix = Ao,
The fact that these maps are compatible with the maps in the inductive system that
defines M!, follows from the commutativity of the diagrams (50) and (51). The fact
that the resulting system of maps

M, % 1Cs — Ag
factors through Conve®® (M) follows from (45).

L]
6.3.2. Now, we claim that the map Convi®*e(M') — Aj constructed above is non-

zero in the quotient category /Perv (971%)[0. Using Proposition 4.4.12, it is enough to
show that the map

Avy- g (ComvHeCke (3\./[1)) — AVN*,w(AO)

is non-zero. The latter reduces to showing that for A dominant and regular, the map
j*}\ *1Cy — A;\_H)

gives rise to a non-zero map
Avi- (W) 1Cs — Aviv- 5 (As,,)-

However, the latter is straightforward from the definition of convolution.
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In particular, by Corollary 4.4.13(2), we obtain that the map of (56) is surjective.
Moreover, it is an isomorphism in the quotient category f Perv(fr’"l%)l0 by Proposi-
tion 3.2.6(1).

We claim that in order to finish the proof of the theorem, it suffices to show that
there exists a non-zero map

(57) Ag — Convtledke(l),

Indeed, if such a map exists, its image in 7 Perv(i}"l%)lo cannot be 0 by Corol-
lary 4.4.13, and hence the composition

Ay — CoaneCke(J\./El) — Ay

is non-zero. Then the above composition is the identity map on Ag, up to a scalar.

L]
Hence, it would remain to show that Conv®%¢ (M) is indecomposable. We claim
that it in fact does not admit irreducible quotients besides the canonical map

CoaneCke(Ml) — CoaneCke(Lwo *Re{p'}).
This is so because CoaneCke(Ml) cannot map to any partially integrable irreducible
object of Perv(&"l%)lo by the same argument as in the proof of Proposition 2.3.2,
and by Corollary 3.2.6(1), Conv'lecke(gwo *R{p'}) is the only non-partially integrable
constituent of Conviecke(Ml).

6.3.3. Thus, our goal is to construct a map as in (57). By Proposition 3.2.10 and
Proposition 6.2.4, it suffices to construct a map

ConvHecks (o)) {25} ) — Vi,
or, equivalently, a map

ConyHedke ((woﬁml){zp}) e V.

Consider the inductive system that defines <(w°M1){2[)}> 1, viewed as an object of

Perv(Grg)!":

UM, St 5/ —wo()+20 * 1O wo(%),Grg -

A
For every such fi and ), we define the map

Jaswo()+2p * 1O g (3),Gre *1Ca = Vg

as the composition:
. . Kk /e
Jx A—wo(p)+2p * IC—WO(X),GYG HCy =~ E,;B‘]*,j\+2ﬁ—wo(ﬁ) * 1G4y @ (V) () —

- j*,X+2p—wo(ﬁ) * Icﬂ—wo(ﬂ) - j*,X+2p—wo(ﬂ) * Vwov(ﬂ—wo(ﬂ)—',-%) >~ Vg,

where the third arrow comes from (53), and the last arrow comes from (52).
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The fact that these maps for various A are compatible with the maps in the inductive
system follows from Lemma 5.4.5. The fact that the resulting map

Conv((woj\./(l){Z[)}) Vi

factors through Convecke ((U’OMI){Q/)}) — Vy, follows from (45).
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