11,324 research outputs found
On relations between one-dimensional quantum and two-dimensional classical spin systems
We exploit mappings between quantum and classical systems in order to obtain
a class of two-dimensional classical systems with critical properties
equivalent to those of the class of one-dimensional quantum systems discussed
in a companion paper (J. Hutchinson, J. P. Keating, and F. Mezzadri,
arXiv:1503.05732). In particular, we use three approaches: the Trotter-Suzuki
mapping; the method of coherent states; and a calculation based on commuting
the quantum Hamiltonian with the transfer matrix of a classical system. This
enables us to establish universality of certain critical phenomena by extension
from the results in our previous article for the classical systems identified.Comment: 36 page
Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb
In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion
A methodology for the environmental assessment of advanced coal extraction systems
Procedures developed to identify and assess potential environment impacts of advanced mining technology as it moves from a generic concept to a more systems definition are described. Two levels of assessment are defined in terms of the design stage of the technology being evaluated. The first level of analysis is appropriate to a conceptual design. At this level it is assumed that each mining process has known and potential environmental impacts that are generic to each mining activity. By using this assumption, potential environmental impacts can be identified for new mining systems. When two or more systems have been assessed, they can be evaluated comparing potential environmental impacts. At the preliminary stage of design, a systems performance can be assessed again with more precision. At this level of systems definition, potential environmental impacts can be analyzed and their significane determined in a manner to facilitate comparisons between systems. At each level of analysis, suggestions calculated to help the designer mitigate potentially harmful impacts are provided
An Exploratory Study of Forces and Frictions affecting Large-Scale Model-Driven Development
In this paper, we investigate model-driven engineering, reporting on an
exploratory case-study conducted at a large automotive company. The study
consisted of interviews with 20 engineers and managers working in different
roles. We found that, in the context of a large organization, contextual forces
dominate the cognitive issues of using model-driven technology. The four forces
we identified that are likely independent of the particular abstractions chosen
as the basis of software development are the need for diffing in software
product lines, the needs for problem-specific languages and types, the need for
live modeling in exploratory activities, and the need for point-to-point
traceability between artifacts. We also identified triggers of accidental
complexity, which we refer to as points of friction introduced by languages and
tools. Examples of the friction points identified are insufficient support for
model diffing, point-to-point traceability, and model changes at runtime.Comment: To appear in proceedings of MODELS 2012, LNCS Springe
Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb
Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion
RSRM-11 (36OW011) ballistics mass properties (STS-35)
The propulsion performance and reconstructed mass properties data from Thiolol's RSRM-11 motors which were assigned to the STS-35 launch are contained. The Thiokol manufacturing designations for the motors were 360W011A/360W011B, which are referred to as RSRM-11A and RSRM-B, respectively. The launch of STS-35 occurred on 2 December 1990 at the Eastern Test Range (ETR). The data contained herein was input to the STS-35 Flight Evaluation Report. The SRM propellant, TP-H1148, is a composite type solid propellants, formulated of polybutediene acrylic acid, acryonitrile terpolymer binder, epoxy curing agent, ammonium perchlorate oxidizer, and aluminum powder fuel. A small amount of burning rate catalyst (iron oxide) was added to achieve the desired propellant burn rate. The propellant evaluation and raw material information for the RSRM-11 are included. The ballistic performance presented was based on the Operational Flight Instrumentation (OFI) 12.5 sample per second pressure data for the steady state and tail off portion of the pressure trace. Recent studies have shown that the transducers are affected by the measuring system at KSC and temperature gradients created by the igniter heaters. Therefore, an adjustment to the data from each transducer is made to make the initial reading match the atmospheric pressure at the time of launch
The enviornmental assessment of a contemporary coal mining system
A contemporary underground coal mine in eastern Kentucky was assessed in order to determine potential off-site and on-site environmental impacts associated with the mining system in the given environmental setting. A 4 section, continuous room and pillor mine plan was developed for an appropriate site in eastern Kentucky. Potential environmental impacts were identified, and mitigation costs determined. The major potential environmental impacts were determined to be: acid water drainage from the mine and refuse site, uneven subsidence of the surface as a result of mining activity, and alteration of ground water aquifers in the subsidence zone. In the specific case examined, the costs of environmental impact mitigation to levels prescribed by regulations would not exceed $1/ton of coal mined, and post mining land values would not be affected
Modeling the buckling and delamination of thin films
I study numerically the problem of delamination of a thin film elastically
attached to a rigid substrate. A nominally flat elastic thin film is modeled
using a two-dimensional triangular mesh. Both compression and bending
rigidities are included to simulate compression and bending of the film. The
film can buckle (i.e., abandon its flat configuration) when enough compressive
strain is applied. The possible buckled configurations of a piece of film with
stripe geometry are investigated as a function of the compressive strain. It is
found that the stable configuration depends strongly on the applied strain and
the Poisson ratio of the film. Next, the film is considered to be attached to a
rigid substrate by springs that can break when the detaching force exceeds a
threshold value, producing the partial delamination of the film. Delamination
is induced by a mismatch of the relaxed configurations of film and substrate.
The morphology of the delaminated film can be followed and compared with
available experimental results as a function of model parameters.
`Telephone-cord', polygonal, and `brain-like' patterns qualitatively similar to
experimentally observed configurations are obtained in different parameter
regions. The main control parameters that select the different patterns are the
mismatch between film and substrate and the degree of in-plane relaxation
within the unbuckled regions.Comment: 8 pages, 10 figure
- …