
                          Hutchinson, J., Keating, J., & Mezzadri, F. (2015). On relations between one-
dimensional quantum and two-dimensional classical spin systems. Advances
in Mathematical Physics, 2015, [652026]. 10.1155/2015/652026

Publisher's PDF, also known as Final Published Version

Link to published version (if available):
10.1155/2015/652026

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

http://dx.doi.org/10.1155/2015/652026
http://research-information.bristol.ac.uk/en/publications/on-relations-between-onedimensional-quantum-and-twodimensional-classical-spin-systems(2009ddb4-36f4-4721-9048-dc38d0bc8eb3).html
http://research-information.bristol.ac.uk/en/publications/on-relations-between-onedimensional-quantum-and-twodimensional-classical-spin-systems(2009ddb4-36f4-4721-9048-dc38d0bc8eb3).html


Research Article
On Relations between One-Dimensional Quantum and
Two-Dimensional Classical Spin Systems

J. Hutchinson, J. P. Keating, and F. Mezzadri

School of Mathematics, University of Bristol, Bristol BS8 1TW, UK

Correspondence should be addressed to F. Mezzadri; f.mezzadri@bris.ac.uk

Received 31 August 2015; Accepted 1 November 2015

Academic Editor: Pierluigi Contucci

Copyright © 2015 J. Hutchinson et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems
characterised by long-range interactions and with critical properties equivalent to those of the class of one-dimensional quantum
systems treated by the authors in a previous publication. In particular, we use three approaches: the Trotter-Suzuki mapping, the
method of coherent states, and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical
system.This enables us to establish universality of certain critical phenomena by extension from the results in the companion paper
for the classical systems identified.

1. Introduction

Mappings between statistical mechanical models have pro-
vided new pathways to compute thermodynamic proper-
ties of systems which were previously intractable [1–3]. In
particular, critical phenomena in 𝑑-dimensional quantum
systems have been investigated by mapping them to (𝑑 +
1)-dimensional classical systems for which there are better
developed techniques, such asMonteCarlo simulations [4, 5].
For example, one well known connection is that between
the one-dimensional 𝑋𝑌𝑍 model and the two-dimensional
zero-field eight-vertex model; namely, the Hamiltonian of
the quantum model and the transfer matrix of the classical
model have the same eigenvectors. Baxter [1] found the
ground state energy for the 𝑋𝑌𝑍 model by first finding
the partition function of the eight-vertex model and then
showing that the quantum Hamiltonian is effectively the
logarithmic derivative of the transfer matrix for the classical
system.

In this paper we exploit these quantum to classical (QC)
mappings for the opposite reason: to take advantage of known
ground state critical behaviour in a general class of quantum
spin chains with long-range interactions to determine the
finite temperature critical properties of an equivalent class of
classical spin systems.

In a companion paper to appear in [6] we computed the
critical exponents 𝑠, ], and 𝑧, corresponding to the energy
gap, correlation length, and dynamic exponent, respectively,
for a class of quantum spin chains, establishing universality
for this class of systems. We also computed the ground
state correlators ⟨𝜎𝑥

𝑖
𝜎
𝑥

𝑖+𝑟
⟩
𝑔
, ⟨𝜎𝑦

𝑖
𝜎
𝑦

𝑖+𝑟
⟩
𝑔
, and ⟨∏𝑟

𝑖=1
𝜎
𝑧

𝑖
⟩
𝑔
for this

class of systems when translation invariance is imposed.
These correlators were found to exhibit quasi-long-range
order behaviour when the systems are gapless, with a critical
exponent dependent upon the system parameters.

The class of quantum spin chains studied in [6] consists of
𝑀 spin-1/2 particles in an external field ℎ, with aHamiltonian
quadratic in Fermi operators given by

H =

𝑀

∑

𝑗,𝑘

(𝐴
𝑗𝑘
𝑏
†

𝑗
𝑏
𝑘
+
𝛾

2
𝐵
𝑗𝑘
(𝑏

†

𝑗
𝑏
†

𝑘
− 𝑏

𝑗
𝑏
𝑘
)) − 2ℎ

𝑀

∑

𝑗=1

𝑏
†

𝑗
𝑏
𝑗
, (1)

where the 𝑏
𝑗
s are the Fermi operators satisfying the usual

Fermi commutation relations

{𝑏
†

𝑗
, 𝑏

𝑘
} = 𝛿

𝑗,𝑘
,

{𝑏
†

𝑗
, 𝑏

†

𝑘
} = {𝑏

𝑗
, 𝑏

𝑘
} = (𝑏

†

𝑗
)
2

= (𝑏
𝑗
)
2

= 0.

(2)

The measure of anisotropy 𝛾 is real, with 0 ≤ 𝛾 ≤ 1; the
matrix 𝐴

𝑗,𝑘
must be Hermitian and 𝐵

𝑗,𝑘
antisymmetric, both
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containing only real entries without loss of generality; and
periodic boundary conditions 𝑏

𝑀+𝑗
= 𝑏

𝑗
are assumed. We

can think of𝐴
𝑗,𝑘

and 𝐵
𝑗,𝑘

as band matrices, whose thickness1
determines the length of the spin-spin interaction.

This model can be diagonalised [7] so that

H = ∑

𝑞


Λ

𝑞


𝜂
†

𝑞
𝜂
𝑞
+ 𝐶, (3)

with the dispersion relation |Λ
𝑞
| determined bymatrices𝐴

𝑗,𝑘

and 𝐵
𝑗,𝑘
; the 𝜂

𝑞
s are Fermi operators, and 𝐶 is a constant.

In [8, 9] Keating andMezzadri restricted theHamiltonian
(1) to possess symmetries corresponding to the Haarmeasure
of each of the classical compact groups 𝑈(𝑁), 𝑂+

(2𝑁),
Sp(2𝑁), 𝑂+

(2𝑁 + 1), 𝑂−

(2𝑁 + 1), and 𝑂−

(2𝑁 + 2), enabling
the calculation of |Λ

𝑞
| using techniques from randommatrix

theory. This corresponds to a symmetry classification of spin
chains similar to that introduced for disordered systems by
Altland and Zirnbauer [10–12]. These symmetry properties
were encoded into the structure of the matrices𝐴

𝑗,𝑘
and 𝐵

𝑗,𝑘
,

as summarised in Appendix A. For example, when restricted
to 𝑈(𝑁) symmetry2 [8, 9]

Λ
𝑞
= 4(Γ +

𝐿

∑

𝑘=1

(𝑎 (𝑘) cos 𝑘𝑞 + 𝑖𝑏 (𝑘) sin 𝑘𝑞))

= 4 (𝑎
𝑞
+ 𝑖𝑏

𝑞
) ,

(4)

where 𝐿 = [(𝑀 − 1)/2], with [ ] denoting the integer part of
its argument. The real and imaginary parts of (4) are

𝑎
𝑞
= Γ +

𝐿

∑

𝑘=1

𝑎 (𝑘) cos 𝑘𝑞,

𝑏
𝑞
=

𝐿

∑

𝑘=1

𝑏 (𝑘) sin 𝑘𝑞.

(5)

Furthermore,

Γ =
1

2

{{

{{

{

𝑎 (0) , if 𝑀 is odd,

𝑎 (0) + (−1)
𝑙

𝑎 (
𝑀

2
) , if 𝑀 is even,

𝑞 =
2𝜋𝑙

𝑀
, 𝑙 = 0, . . . ,𝑀 − 1.

(6)

In general, the symmetry constraints were achieved using real
functions 𝑎(𝑗) and 𝑏(𝑗), even and odd functions of Z/𝑀Z,
respectively, to dictate the entries of matrices𝐴

𝑗,𝑘
and 𝐵

𝑗,𝑘
, as

reported in Appendix A.
Exploiting the formalism developed in [8, 9] enabled us

to compute the critical properties of this class of spin chains
[6], demonstrating a dependence of the critical exponents on
system symmetries and establishing universality for this class
of quantum systems.

Having established universality for the above class of
quantum spin chains in [6], we now make use of QC
mappings to obtain a class of classical systemswith equivalent

critical properties, establishing universality for this class of
classical systems as well by extension. This is our main goal.

There is no systematic technique to construct a classi-
cal 𝑑 + 1-dimensional lattice system from a quantum 𝑑-
dimensional one; there is no alternative but to develop an ad
hoc approach for each case. This is usually a major challenge.
Furthermore, such a mapping is not unique. However, over
the years, severalmodels have been proved equivalent. Suzuki
[3] introduced a powerfulmethod based onTrotter’s formula.
Another technique exploits the fact that if the quantum
Hamiltonian commutes with the transfer matrix of a classical
system, then they are equivalent. This idea was used by
Suzuki [2] to prove the equivalence between the generalised
quantum 𝑋𝑌 model and the two-dimensional Ising and
dimer models. Krinsky [13] showed that the eight-vertex free
fermion model with an electric field is equivalent to the
ground state of the 𝑋𝑌 model in the presence of a magnetic
field. Peschel [14] demonstrated that the quantum𝑋𝑌model
can be mapped to Ising type models with three different
frustrated lattice structures. Lifting the translational invari-
ance, Minami [15] proved the equivalence of the 𝑋𝑌 model
to a class of two-dimensional Ising models with nonuniform
interaction coefficients. Iglói and Lajkó [16] showed that the
quantum Ising model with site-dependent coupling param-
eters in a transverse magnetic field is equivalent to an Ising
model on a square lattice with a diagonally layered structure.
Some of these systems are not translation invariant, but they
all have nearest neighbour spin-spin interactions; to our
knowledge there is no system with long-range interactions
for which classical-quantum equivalence has previously been
proved.

A quantum and a classical system are equivalent if their
partition functions are the same; such a correspondence,
however, is not unique as different classical systems can
be equivalent to the same quantum system. We will here
adopt the following different approaches to map the partition
functions of the quantum spin chains (1) onto those of a
general class of two-dimensional classical systems:

(i) The Trotter-Suzuki formula (Section 2).
(ii) The method of coherent states (Section 3).
(iii) The simultaneous diagonalisation of the quantum

Hamiltonian and the transfer matrix for the classical
system (Section 4).

2. Trotter-Suzuki Mapping

This approach was developed by Suzuki [3], who applied the
Trotter product formula

𝑒
̂
𝐴+𝐵

= lim
𝑛→∞

(𝑒
̂
𝐴/𝑛

𝑒
𝐵/𝑛

)
𝑛

, [𝐴, 𝐵] ̸= 0, (7)

to map the partition function for a 𝑑-dimensional quantum
system to that for a (𝑑 + 1)-dimensional classical one. In
particular he applied it to the partition function of a 𝑑-
dimensional quantum Ising model in a transverse magnetic
field, mapping it to that of a (𝑑 + 1)-dimensional classical
Isingmodel [3]. He then proved the equivalence of the critical



Advances in Mathematical Physics 3

properties of the ground state of the quantum system and the
finite temperature properties of the classical system.

Here we harness this technique to supply us with a class
of two-dimensional classical systems with critical properties
equivalent to those of the ground state of the quantum spin
chains (1). Like the original quantum system, the classical
counterparts are also able to possess symmetries reflected
by those of the Haar measure of each of the different
classical compact groups3, enabling the dependence of critical
properties on system symmetries to be observed.

There aremanyways to apply the Trotter-Suzukimapping
to the partition function for the class of quantum spin chains
(1), resulting in different classical partition functions. Those
that we obtain are of the form

𝑍
𝐴
= ∑

all states
𝑒
−𝛽clHcl({𝑠𝑖,𝑗})𝑓 ({𝑠

𝑖,𝑗
}) , (8a)

𝑍
𝐵
= ∑

restricted states
𝑒
−𝛽clHcl({𝑠𝑖,𝑗}), (8b)

𝑍
𝐶
= ∑

all configurations
∏

𝑖

𝜔
𝑖
, (8c)

𝑍
𝐷
= ∑

all states
𝑒
−𝛽clHcl({𝜎𝑖,𝑗},{𝜏𝑖,𝑗},{𝑠𝑖,𝑗}), (8d)

where Hcl is the effective classical Hamiltonian. In (8a) and
(8b),Hcl is a real function of the classical spin variables 𝑠

𝑖,𝑗
=

±1 and in (8d) it is a complex function of the classical spin
variables 𝜎

𝑖,𝑗
, 𝜏

𝑖,𝑗
, 𝑠

𝑖,𝑗
= ±1, which represent the eigenvalues

of the Pauli matrices 𝜎𝑥
𝑖
, 𝜎𝑦

𝑖
, and 𝜎𝑧

𝑖
, respectively. The second

index in the classical variables 𝜎
𝑖,𝑗
, 𝜏

𝑖,𝑗
, 𝑠

𝑖,𝑗
is due to the extra

dimension appearing when applying the Trotter formula (7).
The function 𝑓({𝑠

𝑖,𝑗
}) is also a real function of the classical

spin variables 𝑠
𝑖,𝑗
= ±1, and we find that if 𝑓({𝑠

𝑖,𝑗
}) =

1, then (8a) has the familiar form of a classical partition
function, with Hcl representing the Hamiltonian describing
the effective classical system. The same is true for (8b) and
(8d), but (8b) has additional constraints on the spin states and
(8d) involves imaginary interaction coefficients. The form in
(8c) is that of a vertex model with vertex weights given by 𝜔

𝑖
.

Examples of equivalent partition functions with each of these
forms will be given in the following sections.

We begin to present our results by first restricting to
quantum systems with nearest neighbour interactions only.
The extensions to longer range interactions are detailed in
Appendix B.

2.1. Nearest Neighbour Interactions. Restricting (1) to near-
est neighbour interactions gives the well known one-
dimensional quantum𝑋𝑌model4

H
𝑋𝑌

= −

𝑀

∑

𝑗=1

(𝐽
𝑥

𝑗
𝜎
𝑥

𝑗
𝜎
𝑥

𝑗+1
+ 𝐽

𝑦

𝑗
𝜎
𝑦

𝑗
𝜎
𝑦

𝑗+1
+ ℎ𝜎

𝑧

𝑗
) , (9)

where 𝐽𝑥
𝑗
= −(1/2)(𝐴

𝑗,𝑗+1
+ 𝛾𝐵

𝑗,𝑗+1
), 𝐽𝑦

𝑗
= −(1/2)(𝐴

𝑗,𝑗+1
−

𝛾𝐵
𝑗,𝑗+1
). This mapping is achieved by using Jordan-Wigner

transformations:

𝑏
†

𝑗
=
1

2
(𝑚

2𝑗+1
+ 𝑖𝑚

2𝑗
) =

1

2
(𝜎

𝑥

𝑗
+ 𝑖𝜎

𝑦

𝑗
)

𝑗−1

∏

𝑙=1

(−𝜎
𝑧

) ,

𝑏
𝑗
=
1

2
(𝑚

2𝑗+1
− 𝑖𝑚

2𝑗
) =

1

2
(𝜎

𝑥

𝑗
− 𝑖𝜎

𝑦

𝑗
)

𝑗−1

∏

𝑙=1

(−𝜎
𝑧

𝑙
) ,

(10)

where

𝑚
2𝑗+1

= 𝜎
𝑥

𝑗

𝑗−1

∏

𝑙=0

(−𝜎
𝑧

𝑗
) ,

𝑚
2𝑗
= 𝜎

𝑦

𝑗

𝑗−1

∏

𝑙=0

(−𝜎
𝑧

𝑗
) ,

(11)

or inversely as

𝜎
𝑧

𝑗
= 𝑖𝑚

2𝑗
𝑚

2𝑗+1
,

𝜎
𝑥

𝑗
= 𝑚

2𝑗+1

𝑗−1

∏

𝑙=0

(−𝑖𝑚
2𝑙
𝑚

2𝑙+1
) ,

𝜎
𝑦

𝑗
= 𝑚

2𝑗

𝑗−1

∏

𝑙=0

(−𝑖𝑚
2𝑙
𝑚

2𝑙+1
) .

(12)

The 𝑚
𝑗
s are thus Hermitian and obey the anticommutation

relations {𝑚
𝑗
, 𝑚

𝑘
} = 2𝛿

𝑗𝑘
.

2.1.1. A Class of Classical Ising Type Models with Nearest
Neighbour Interactions. When we restrict to 𝛾 = 1 and
𝐵
𝑗,𝑗+1

= 𝐴
𝑗,𝑗+1

= 𝐽
𝑖
, (9) becomes a class of quantum Ising type

models in a transverse magnetic field with site-dependent
coupling parameters. Suzuki showed [3] that the partition
function for such a system can be mapped5 to that for a class
of two-dimensional classical Ising models with Hamiltonian
Hcl given by

Hcl = −
𝑛

∑

𝑝=1

𝑀

∑

𝑗=1

(𝐽
ℎ

𝑗
𝑠
𝑗,𝑝
𝑠
𝑗+1,𝑝

+ 𝐽
V
𝑠
𝑗,𝑝
𝑠
𝑗,𝑝+1

) , (13)

with parameter relations

𝛽cl𝐽
V
=
1

2
log coth

𝛽quℎ

𝑛
,

𝛽cl𝐽
ℎ

𝑗
=
𝛽qu

𝑛
𝐽
𝑗
,

(14)

where 𝛽qu (cl) is the inverse temperature of the quantum
(classical) system.

Thus we have an equivalence between our class of quan-
tum spin chains under these restrictions and a class of two-
dimensional classical Ising models also with site-dependent
coupling parameters in one direction and a constant coupling
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parameter in the other. From (14) we see that the magnetic
field ℎ driving the phase transition in the ground state of the
quantum system plays the role of temperature 𝛽cl driving the
finite temperature phase transition of the classical system.

This mapping holds in the limit 𝑛 → ∞, which would
result in anisotropic couplings for the class of classical Ising
models, unless we also take 𝛽qu → ∞. This therefore
provides us with a connection between the ground state
properties of the class of quantum systems and the finite
temperature properties of the classical systems.

In this case we can also use this mapping to write the
expectation value of any function 𝑓({𝜎𝑧}) with respect to the
ground state of the class of quantum systems as

⟨𝑓 ({𝜎
𝑧

})⟩qu = ⟨𝑓 ({𝑠})⟩cl , (15)

where ⟨𝑓({𝑠})⟩cl is the finite temperature expectation of
the corresponding function of classical spin variables with
respect to the class of classical systems (13).

Some examples of this are the spin correlation functions
between two or more spins in the ground state of the class of
quantum systems in the 𝑧 direction, which can be interpreted
as the equivalent correlator between classical spins in the
same row of the corresponding class of classical systems (13):

⟨𝜎
𝑧

𝑗
𝜎
𝑧

𝑗+𝑟
⟩
qu
= ⟨𝑠

𝑗,𝑝
𝑠
𝑗+𝑟,𝑝
⟩cl ,

⟨

𝑟

∏

𝑗=1

𝜎
𝑧

𝑗
⟩

qu

= ⟨

𝑟

∏

𝑗=1

𝑠
𝑗,𝑝
⟩

cl

.

(16)

2.1.2. A Class of Classical Ising Type Models with Additional
Constraints on the Spin States. Similarly, the Trotter-Suzuki
mapping can be applied to the partition function for the 𝑋𝑌
model (9) in full generality. In this case we first order the
terms in the partition function in the following way:

𝑍 = lim
𝑛→∞

Tr [V̂
𝑎
V̂

𝑏
]
𝑛

,

V̂
𝛼
= ∑

𝑗∈𝛼

𝑒
(𝛽qu/𝑛)̂H

𝑧

𝑗 𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑗 𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑗 𝑒
(𝛽qu/𝑛)̂H

𝑧

𝑗 ,

(17)

where Ĥ𝜇

𝑗
= 𝐽

𝜇

𝑗
𝜎
𝜇

𝑗
𝜎
𝜇

𝑗+1
for 𝜇 ∈ 𝑥, 𝑦, Ĥ𝑧

𝑗
= (ℎ/4)(𝜎

𝑧

𝑗
+ 𝜎

𝑧

𝑗+1
),

and 𝛼 denotes either 𝑎 or 𝑏, which are the sets of odd and even
integers, respectively.

We then insert 2𝑛 copies of the identity operator in the
𝜎
𝑧 basis; I

{ ⃗𝑠𝑝}
= ∑

⃗𝑠𝑝

| ⃗𝑠
𝑝
⟩⟨ ⃗𝑠

𝑝
| where | ⃗𝑠

𝑝
⟩ = |𝑠

1,𝑝
, 𝑠

2,𝑝
, . . . , 𝑠

𝑀,𝑝
⟩

between each of the 2𝑛 terms in (17):

𝑍 = lim
𝑛→∞

Tr I
{ ⃗𝑠1}

V̂
𝑎
I
{ ⃗𝑠2}

V̂
𝑏
⋅ ⋅ ⋅ I

{ ⃗𝑠2𝑛−1}
V̂

𝑎
I
{ ⃗𝑠2𝑛}

V̂
𝑏

= lim
𝑛→∞

∑

𝑠𝑗,𝑝

2𝑛

∏

𝑝∈𝑎

⟨ ⃗𝑠
𝑝


V̂

𝑎


⃗𝑠
𝑝+1
⟩ ⟨ ⃗𝑠

𝑝+1


V̂

𝑏


⃗𝑠
𝑝+2
⟩ .

(18)

The remaining matrix elements in (18) are given by

⟨ ⃗𝑠
𝑝


V̂

𝛼


⃗𝑠
𝑝+1
⟩ =

𝑀

∏

𝑗∈𝛼

⟨𝑠
𝑗,𝑝
, 𝑠

𝑗+1,𝑝


M

𝑠
𝑗,𝑝+1

, 𝑠
𝑗+1,𝑝+1

⟩ , (19)

where

M =

(
(
(
(
(
(
(

(

𝑒
𝛽quℎ/𝑛 cosh(

2𝛽qu𝛾

𝑛
𝐵
𝑗
) 0 0 sinh(

2𝛽qu𝛾

𝑛
𝐵
𝑗
)

0 cosh(
2𝛽qu

𝑛
𝐴

𝑗
) sinh(

2𝛽qu

𝑛
𝐴

𝑗
) 0

0 sinh(
2𝛽qu

𝑛
𝐴

𝑗
) cosh(

2𝛽qu

𝑛
𝐴

𝑗
) 0

sinh(
2𝛽qu𝛾

𝑛
𝐵
𝑗
) 0 0 𝑒

−ℎ/𝑛 cosh(
2𝛽qu𝛾

𝑛
𝐵
𝑗
)

)
)
)
)
)
)
)

)

. (20)

It is then possible to write the terms (19) in exponential
form as

⟨ ⃗𝑠
𝑝


V̂

𝛼


⃗𝑠
𝑝+1
⟩ =

𝑀

∏

𝑗∈𝛼

𝑒
−𝛽clH𝑗,𝑝 , (21)

whereH
𝑗,𝑝

can be written as

H
𝑗,𝑝
= −
1

4
(𝐽

V
𝑗
𝑠
𝑗,𝑝
𝑠
𝑗,𝑝+1

+ 𝐽
ℎ

𝑗
𝑠
𝑗,𝑝
𝑠
𝑗+1,𝑝

+ 𝐽
𝑑

𝑗
𝑠
𝑗+1,𝑝

𝑠
𝑗,𝑝+1

+ 𝐻(𝑠
𝑗,𝑝
+ 𝑠

𝑗+1,𝑝
) + 𝐶

𝑗
) ,

(22)

or more symmetrically as

H
𝑗,𝑝
= −
1

4
(𝐽

ℎ

𝑗
(𝑠

𝑗,𝑝
𝑠
𝑗+1,𝑝

+ 𝑠
𝑗,𝑝+1

𝑠
𝑗+1,𝑝+1

)

+ 𝐽
V
𝑗
(𝑠

𝑗,𝑝
𝑠
𝑗,𝑝+1

+ 𝑠
𝑗+1,𝑝

𝑠
𝑗+1,𝑝+1

)

+ 𝐽
𝑑

𝑗
(𝑠

𝑗,𝑝
𝑠
𝑗+1,𝑝+1

+ 𝑠
𝑗,𝑝+1

𝑠
𝑗+1,𝑝

)

+ 𝐻(𝑠
𝑗,𝑝
+ 𝑠

𝑗+1,𝑝
+ 𝑠

𝑗,𝑝+1
+ 𝑠

𝑗+1,𝑝+1
) + 𝐶

𝑗
) ,

(23)

where

𝛽cl𝐽
ℎ

𝑗
= log

sinh (4𝛽qu/𝑛) 𝛾𝐵𝑗
sinh (4𝛽qu/𝑛)𝐴𝑗

,
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𝛽cl𝐽
𝑑

𝑗
= log

tanh (2𝛽qu/𝑛)𝐴𝑗

tanh (2𝛾𝛽qu/𝑛) 𝐵𝑗
,

𝛽cl𝐽
V
𝑗
= log coth

2𝛾𝛽qu

𝑛
𝐵
𝑗
coth

2𝛽qu

𝑛
𝐴

𝑗
,

𝛽cl𝐻 =
𝛽quℎ

𝑛
,

𝛽cl𝐶𝑗
= log sinh

2𝛽qu

𝑛
𝐴

𝑗
sinh

2𝛾𝛽qu

𝑛
𝐵
𝑗
,

(24)

as long aswe have the additional restriction that the four spins
bordering each shaded square in Figure 1 obey

𝑠
𝑗,𝑝
𝑠
𝑗+1,𝑝

𝑠
𝑗,𝑝+1

𝑠
𝑗+1,𝑝+1

= 1. (25)

This guarantees that each factor in the partition function is
different from zero.

Thus we obtain a partition function equivalent to that for
a class of two-dimensional classical Ising type models on a
𝑀× 2𝑛 lattice with classical HamiltonianHcl given by

Hcl =
2𝑛

∑

𝑝∈𝑎

𝑀

∑

𝑗∈𝑎

H
𝑗,𝑝
+

2𝑛

∑

𝑝∈𝑏

𝑀

∑

𝑗∈𝑏

H
𝑗,𝑝
, (26)

whereH
𝑗,𝑝

can have the form (22) or (23), with the additional
constraint (25).

In this case we see that the classical spin variables at
each site of the two-dimensional lattice only interact with
other spins bordering the same shaded square, represented
schematically in Figure 1, with an even number of these four
interacting spins being spun up and down (from condition
(25)).

This mapping holds in the limit 𝑛 → ∞, which would
result in coupling parameters 𝐽ℎ

𝑗
, 𝐽

𝑑

𝑗
, 𝐻 → 0 and 𝐽V

𝑗
→ ∞

unless we also take 𝛽qu → ∞. Therefore this again gives us a
connection between the ground state properties of this class
of quantum systems and the finite temperature properties of
the classical systems.

Again we have the same relationship between expectation
values (15) and (16).

2.2. A Class of Classical Ising Type Models with Imaginary
Interaction Coefficients. Alternatively, lifting the restriction
(25), we instead can obtain a class of classical systems
described by aHamiltonian containing imaginary interaction
coefficients:

Hcl = −
𝑛

∑

𝑝=1

𝑀

∑

𝑗=1

(𝐽
𝜎

𝑗
𝜎
𝑗,𝑝
𝜎
𝑗+1,𝑝

+ 𝐽
𝜏

𝑗
𝜏
𝑗,𝑝
𝜏
𝑗+1,𝑝

+ 𝑖𝐽𝜏
𝑗,𝑝
(𝜎

𝑗,𝑝
− 𝜎

𝑗,𝑝+1
)) ,

(27)

Trotter

direction

p ↓

Lattice direction j→

Figure 1: Lattice representation of a class of classical systems
equivalent to the general class of quantum systems (9). Spins only
interact with other spins bordering the same shaded square.

with parameter relations given by

𝛽cl𝐽
𝜎

𝑗
=
𝛽qu

𝑛
𝐽
𝑥

𝑗
,

𝛽cl𝐽
𝜏

𝑗
=
𝛽qu

𝑛
𝐽
𝑦

𝑗
,

𝛽cl𝐽 =
1

2
arctan 1

sinh (𝛽qu/𝑛) ℎ
.

(28)

To achieve this, we first apply the Trotter-Suzukimapping
to the quantum partition function divided in the following
way:

𝑍 = lim
𝑛→∞

Tr [Û
1
Û

2
]
𝑛

,

Û
1
= 𝑒

(𝛽qu/2𝑛)̂H𝑥𝑒
(𝛽qu/2𝑛)̂H𝑧𝑒

(𝛽qu/2𝑛)̂H𝑦 ,

Û
2
= 𝑒

(𝛽qu/2𝑛)̂H𝑦𝑒
(𝛽qu/2𝑛)̂H𝑧𝑒

(𝛽qu/2𝑛)̂H𝑥 ,

(29)

where this time Ĥ𝜇

= ∑
𝑀

𝑗=1
𝐽
𝜇

𝑗
𝜎
𝜇

𝑗
𝜎
𝜇

𝑗+1
for 𝜇 ∈ 𝑥, 𝑦 and Ĥ𝑧

=

∑
𝑀

𝑗=1
𝜎
𝑧

𝑗
.

Next insert 𝑛 of each of the identity operators I
{�⃗�𝑝}

=

∑
�⃗�𝑝

|�⃗�
𝑝
⟩⟨�⃗�

𝑝
| and I

{ ⃗𝜏𝑝}
= ∑

⃗𝜏𝑝

| ⃗𝜏
𝑝
⟩⟨ ⃗𝜏

𝑝
|, which are in the 𝜎𝑥 and

𝜎
𝑦 basis, respectively, into (29) obtaining

𝑍 = lim
𝑛→∞

Tr I
{�⃗�1}

Û
1
I
{ ⃗𝜏1}

Û
2
I
{�⃗�2}

Û
1
I
{ ⃗𝜏2}
⋅ ⋅ ⋅ I

{ ⃗𝜏2𝑛}
Û

2

= lim
𝑛→∞

∑

𝜎𝑗,𝑝 ,𝜏𝑗,𝑝

𝑛

∏

𝑝=1

⟨�⃗�
𝑝


Û

1


⃗𝜏
𝑝
⟩ ⟨ ⃗𝜏

𝑝


Û

2


�⃗�
𝑝+1
⟩ .

(30)
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It is then possible to rewrite the remaining matrix ele-
ments in (30) as complex exponentials:

⟨�⃗�
𝑝


Û

1


⃗𝜏
𝑝
⟩ ⟨ ⃗𝜏

𝑝


Û

2


�⃗�
𝑝+1
⟩

= 𝑒
(𝛽qu/𝑛)((1/2)(H

𝑥

𝑝
+H𝑥
𝑝+1

)+H
𝑦

𝑝) ⟨�⃗�
𝑝


𝑒
(𝛽qu/2𝑛)̂H

𝑧 
⃗𝜏
𝑝
⟩ ⟨ ⃗𝜏

𝑝



⋅ 𝑒
(𝛽qu/2𝑛)̂H

𝑧 
�⃗�
𝑝+1
⟩

= 𝐶
2𝑀

𝑒
(𝛽qu/𝑛)((1/2)(H

𝑥

𝑝
+H𝑥
𝑝+1

)+H
𝑦

𝑝)+(𝑖/2)𝐷∑
𝑀

𝑗=1
𝜏𝑗,𝑝(𝜎𝑗,𝑝−𝜎𝑗,𝑝+1),

(31)

where H𝑥

𝑝
= ∑

𝑀

𝑗=1
𝐽
𝑥

𝜎
𝑗,𝑝
𝜎
𝑗+1,𝑝

, H𝑦

𝑝
= ∑

𝑀

𝑗=1
𝐽
𝑦

𝜏
𝑗,𝑝
𝜏
𝑗+1,𝑝

, 𝐷 =
(1/2) arctan(1/ sinh(𝛽qu/𝑛)ℎ), and 𝐶 = (1/2) cosh((𝛽qu/𝑛)ℎ),
and we have used

⟨𝜎
𝑗,𝑝


𝑒
𝑎𝜎
𝑧

𝑗

𝜏
𝑗,𝑝
⟩

=
1

2
cosh (2𝑎) 𝑒𝑖(1/2) arctan(1/ sinh(2𝑎))𝜎𝑗,𝑝𝜏𝑗,𝑝 .

(32)

The classical system with Hamiltonian given by (27) can
be depicted as in Figure 2, where the two types of classical spin
variables 𝜎

𝑗,𝑝
and 𝜏

𝑗,𝑝
can be visualised as each representing

two-dimensional lattices on two separate planes, as shown in
the top diagram in Figure 2. One can imagine “unfolding”
the three-dimensional interaction surface shown in the top
diagram in Figure 2 into the two-dimensional plane shown in
the bottom diagram with new classical spin variables labelled
by �̃�

𝑗,𝑝
.

As in previous cases, this mapping holds in the limit 𝑛 →
∞, which would result in coupling parameters 𝐽𝜎

𝑗
, 𝐽𝜏

𝑗
→ ∞,

and 𝐽 → 𝜋/4𝛽cl unless we also take 𝛽qu → 0. Therefore,
it gives us a connection between the ground state properties
of the class of quantum systems and the finite temperature
properties of the classical ones.

We can use this mapping to write the expectation value of
any function 𝑓({𝜎𝑥}) or 𝑓({𝜎𝑦}) with respect to the ground
state of the class of quantum systems (9) as

⟨𝑓 ({𝜎
𝑥

})⟩qu = ⟨𝑓 ({𝜎})⟩cl ,

⟨𝑓 ({𝜎
𝑦

})⟩qu = ⟨𝑓 ({𝜏})⟩cl ,
(33)

where ⟨𝑓({𝜎})⟩cl and ⟨𝑓({𝜏})⟩cl are the finite temperature
expectation values of the equivalent function of classical spin
variables with respect to the class of classical systems (27).6

An example of this is the two-spin correlation function
between spins in the ground state of the class of quantum
systems (9) in the 𝑥 and 𝑦 direction which can be interpreted
as the two-spin correlation function between spins in the
same odd and even rows of the corresponding class of
classical systems (13), respectively:

⟨𝜎
𝑥

𝑗
𝜎
𝑥

𝑗+𝑟
⟩
qu
= ⟨𝜎

𝑗,𝑝
𝜎
𝑗+𝑟,𝑝
⟩cl ,

⟨𝜎
𝑦

𝑗
𝜎
𝑦

𝑗+𝑟
⟩
qu
= ⟨𝜏

𝑗,𝑝
𝜏
𝑗+𝑟,𝑝
⟩cl .

(34)

2.3. A Class of Classical Vertex Models. Another interpre-
tation of the partition function obtained using the Trotter-
Suzuki mapping, following a similar method to that of [17], is
that corresponding to a vertex model.

This can be seen by applying the Trotter-Suzuki mapping
to the quantum partition function ordered as in (17) and
inserting 2𝑛 identity operators as in (18), with remaining
matrix elements given once more by (19). This time, instead
of writing them in exponential form as in (21), we interpret
each matrix element as a weight corresponding to a different
vertex configuration at every point (𝑗, 𝑝) of the lattice:

⟨ ⃗𝑠
𝑝


𝑒
(𝛽qu/𝑛)V𝛼 

⃗𝑠
𝑝+1
⟩

=

𝑀

∏

𝑗∈𝛼

𝜔
𝑗

(𝑠
𝑗,𝑝
, 𝑠

𝑗+1,𝑝
, 𝑠

𝑗,𝑝+1
, 𝑠

𝑗+1,𝑝+1
) .

(35)

As such, the partition function can be thought of as corre-
sponding to a class of two-dimensional classical vertex mod-
els on a (𝑀/2+𝑛)×(𝑀/2+𝑛) lattice as shown in Figure 4, with
𝑀𝑛 vertices each with a weight 𝜔𝑗

(𝑠
𝑗,𝑝
𝑠
𝑗+1,𝑝

, 𝑠
𝑗,𝑝+1

, 𝑠
𝑗+1,𝑝+1

)

given by one of the following:

𝜔
𝑗

1
(+1, +1, +1, +1) = 𝑒

ℎ𝛽qu/𝑛 cosh(
2𝛽qu𝛾

𝑛
𝐵
𝑗
) ,

𝜔
𝑗

2
(−1, −1, −1, −1) = 𝑒

−𝛽quℎ/𝑛 cosh(
2𝛾𝛽qu

𝑛
𝐵
𝑗
) ,

𝜔
𝑗

3
(−1, +1, +1, −1) = 𝜔

𝑗

4
(+1, −1, −1, +1)

= sinh(
2𝛽qu

𝑛
𝐴

𝑗
) ,

𝜔
𝑗

5
(+1, −1, +1, −1) = 𝜔

𝑗

6
(−1, +1, −1, +1)

= cosh(
2𝛽qu

𝑛
𝐴

𝑗
) ,

𝜔
𝑗

7
(−1, −1, +1, +1) = 𝜔

𝑗

8
(+1, +1, −1, −1)

= sinh(
2𝛽qu𝛾

𝑛
𝐵
𝑗
) ,

(36)

thus leading to a class of 8-vertex models with the usual
8 possible respective vertex configurations as shown in
Figure 3.

The values of these weights depend upon the column
𝑗 = 1, . . . ,𝑀 of the original lattice; thus each column has
its own separate set of 8 weights, as represented by the
different colours of the circles at the vertices in each column
in Figure 4.

Once again, this mapping holds in the limit 𝑛 → ∞,
which would result in weights 𝜔𝑖

3
, 𝜔

𝑖

4
, 𝜔

𝑖

7
, 𝜔

𝑖

8
→ 0 and

weights 𝜔𝑖

1
, 𝜔

𝑖

2
, 𝜔

𝑖

5
, 𝜔

𝑖

6
→ 1 unless we also take 𝛽qu → ∞. It

thus gives us a connection between the ground state proper-
ties of the class of quantum systems and the finite temperature
properties of the corresponding classical systems.

2.4. Algebraic Form for the Classical Partition Function.
Finally one last form for the partition function can be
obtained using the same method as in Section 2.1.2 such that
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𝜎4,1

𝜎3,1

𝜎2,1

𝜎1,1

𝜎4,2

𝜎3,2

𝜎2,2

𝜎1,2

𝜎4,3

𝜎3,3

𝜎2,3

𝜎1,3

𝜏4,1

𝜏3,1

𝜏2,1

𝜏1,1

𝜏4,2

𝜏3,2

𝜏2,2

𝜏1,2

𝜏4,3

𝜏3,3

𝜏2,3

𝜏1,3

1 2 3 4 5 6

𝜎j,1 = �̃�j,1

𝜏j,1 = �̃�j,2

𝜎j,2 = �̃�j,3

𝜏j,2 = �̃�j,4

𝜎j,3 = �̃�j,5

𝜏j,3 = �̃�j,6

Trotter

direction

p ↓

Lattice direction j→

Figure 2: Lattice representation of a class of classical systems equivalent to the class of quantum systems (9). The blue (thick solid) lines
represent interactions with coefficients dictated by 𝐽𝜎

𝑗
and the red (thick dashed) lines by 𝐽𝜏

𝑗
, and the 𝐽

𝑗
coupling constants correspond to the

green (thin solid) lines which connect these two lattice interaction planes.

𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7 𝜔8

Figure 3: The 8 allowed vertex configurations.

the quantum partition function is mapped to one involving
entries from matrices given by (20). This time however,
instead of applying the extra constraint (25), we can write the
partition function as

𝑍 = lim
𝑛→∞

∑

𝜎𝑗,𝑝=±1

1

4
(

𝑛

∏

𝑝∈𝑎

𝑀

∏

𝑗∈𝑎

+

𝑛

∏

𝑝∈𝑏

𝑀

∏

𝑗∈𝑏

)

⋅ [(1 − 𝑠
𝑗,𝑝
𝑠
𝑗+1,𝑝

) (1 + 𝑠
𝑗,𝑝
𝑠
𝑗,𝑝+1

) cosh
2𝛽qu

𝑛
𝐴

𝑗,𝑗+1

+ (1 − 𝑠
𝑗,𝑝
𝑠
𝑗+1,𝑝

) (1 − 𝑠
𝑗,𝑝
𝑠
𝑗,𝑝+1

) sinh
2𝛽qu

𝑛
𝐴

𝑗,𝑗+1

+ (1 + 𝑠
𝑗,𝑝
𝑠
𝑗+1,𝑝

) (1 − 𝑠
𝑗,𝑝
𝑠
𝑗,𝑝+1

) sinh
2𝛽qu𝛾

𝑛
𝐵
𝑗,𝑗+1

+ (1 + 𝑠
𝑗,𝑝
𝑠
𝑗,𝑝+1

) (1 + 𝑠
𝑗,𝑝
𝑠
𝑗,𝑝+1

) 𝑒
(𝛽qu/𝑛)ℎ𝑠𝑗,𝑝

⋅ cosh
2𝛽qu𝛾

𝑛
𝐵
𝑗,𝑗+1
] .

(37)

2.5. Longer Range Interactions. The Trotter-Suzuki mapping
can similarly be applied to the class of quantum systems (1)
with longer range interactions, to obtain partition functions
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Trotter

direction

p ↓

Lattice direction j→

Figure 4: Lattice representation demonstrating how configurations
of spins on the dotted vertices (represented by arrows ↑↓) give rise
to arrow configurations about the solid vertices.

equivalent to classical systems with rather cumbersome
descriptions, examples of which can be found in Appendix B.

3. Method of Coherent States

An alternative method to map the partition function for the
class of quantum spin chains (1) as studied in [6] onto that
corresponding to a class of classical systems with equivalent
critical properties is to use the method of coherent states [18].

To use such a method for spin operators 𝑆𝑖 = (ℏ/2)𝜎𝑖,
we first apply the Jordan-Wigner transformations (10) once
more to map the Hamiltonian (1) onto one involving Pauli
operators 𝜎𝑖, 𝑖 ∈ 𝑥, 𝑦, 𝑧:

Ĥqu =
1

2
∑

1≤𝑗≤𝑘≤𝑀

((𝐴
𝑗,𝑘
+ 𝛾𝐵

𝑗,𝑘
) 𝜎

𝑥

𝑗
𝜎
𝑥

𝑘

+ (𝐴
𝑗,𝑘
− 𝛾𝐵

𝑗,𝑘
) 𝜎

𝑦

𝑗
𝜎
𝑦

𝑘
)(

𝑘−1

∏

𝑙=𝑗+1

− 𝜎
𝑧

𝑙
) − ℎ

𝑀

∑

𝑗=1

𝜎
𝑧

𝑗
.

(38)

We then construct a path integral expression for the
quantum partition function for (38). First we divide the
quantum partition function into 𝑛 pieces

𝑍 = Tr 𝑒−𝛽̂Hqu = Tr [𝑒−Δ𝜏̂Hqu𝑒
−Δ𝜏

̂Hqu ⋅ ⋅ ⋅ 𝑒
−Δ𝜏

̂Hqu]

= TrV𝑛

,

(39)

where Δ𝜏 = 𝛽/𝑛 and V = 𝑒−Δ𝜏̂Hqu .

Next we insert resolutions of the identity in the infinite
set of spin coherent states |N⟩ between each of the 𝑛 factors
in (39), such that we obtain

𝑍 = ∫ ⋅ ⋅ ⋅ ∫

𝑀

∏

𝑖=1

𝑑N (𝜏
𝑖
) ⟨N (𝜏

𝑀
)
 𝑒

−Δ𝜏H N (𝜏𝑀−1
)⟩

⋅ ⟨N (𝜏
𝑀−1
)
 𝑒

−Δ𝜏H N (𝜏𝑀−2
)⟩ ⋅ ⋅ ⋅ ⟨N (𝜏

1
)


⋅ 𝑒
−Δ𝜏H N (𝜏𝑀)⟩ .

(40)

Taking the limit𝑀 → ∞ such that

⟨N (𝜏)| 𝑒−Δ𝜏̂Hqu(Ŝ) |N (𝜏 − Δ𝜏)⟩ = ⟨N (𝜏)|

⋅ (1 − Δ𝜏Ĥqu (Ŝ)) (|N (𝜏)⟩ − Δ𝜏
𝑑

𝑑𝜏
|N (𝜏)⟩)

= ⟨N (𝜏) | N (𝜏)⟩ − Δ𝜏 ⟨N (𝜏)| 𝑑
𝑑𝜏
|N (𝜏)⟩

− Δ𝜏 ⟨N (𝜏)| Ĥqu (Ŝ) |N (𝜏)⟩ + 𝑂 ((Δ𝜏)
2

)

= 𝑒
−Δ𝜏(⟨N(𝜏)|(𝑑/𝑑𝜏)|N(𝜏)⟩+H(N(𝜏)))

,

Δ𝜏

𝑀

∑

𝑖=1

→ ∫

𝛽

0

𝑑𝜏,

𝑀

∏

𝑖=1

𝑑N (𝜏
𝑖
) → DN (𝜏) ,

(41)

we can rewrite (40) as

𝑍 = ∫

N(𝛽)

N(0)

DN (𝜏) 𝑒−∫

𝛽

0
𝑑𝜏H(N(𝜏))−S𝐵 , (42)

where H(N(𝜏)) now has the form of a Hamiltonian corre-
sponding to a two-dimensional classical system and

S
𝐵
= ∫

𝛽

0

𝑑𝜏 ⟨N (𝜏)| 𝑑
𝑑𝜏
|N (𝜏)⟩ (43)

appears through the overlap between the coherent states
at two infinitesimally separated steps Δ𝜏 and is purely
imaginary. This is the appearance of the Berry phase in the
action [18, 19]. Despite being imaginary, this term gives the
correct equation of motion for spin systems [19].

The coherent states for spin operators, labeled by the
continuous vector N in three dimensions, can be visualised
as a classical spin (unit vector) pointing in direction N such
that they have the property

⟨N| Ŝ |N⟩ = N. (44)

They are constructed by applying a rotation operator to an
initial state to obtain all the other states as described in [18]
such that we end up with

⟨N| 𝑆𝑖 |N⟩ = −𝑆𝑁𝑖

, (45)
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with𝑁𝑖s given by

N = (𝑁𝑥

, 𝑁
𝑦

, 𝑁
𝑧

) = (sin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃) ,

0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 ≤ 2𝜋.

(46)

Thus when our quantum Hamiltonian Ĥqu is given by
(38), H(N(𝜏)) in (42) now has the form of a Hamiltonian
corresponding to a two-dimensional classical system given by

H (N (𝜏)) = ⟨N (𝜏)| Ĥqu |N (𝜏)⟩

= ∑

1≤𝑗≤𝑘≤𝑀

((𝐴
𝑗,𝑘
+ 𝛾𝐵

𝑗,𝑘
)𝑁

𝑥

𝑗
(𝜏)𝑁

𝑥

𝑘
(𝜏)

+ (𝐴
𝑗,𝑘
− 𝛾𝐵

𝑗,𝑘
)𝑁

𝑦

𝑗
(𝜏)𝑁

𝑦

𝑘
(𝜏))

𝑘−1

∏

𝑙=𝑗+1

(−𝑁
𝑧

𝑙
(𝜏))

− ℎ

𝑀

∑

𝑗=1

𝑁
𝑧

𝑗
(𝜏) = ∑

1≤𝑗≤𝑘≤𝑀

(𝐴
𝑗,𝑘

cos (𝜙
𝑗
(𝜏) − 𝜙

𝑘
(𝜏))

+ 𝐵
𝑗,𝑘
𝛾 cos (𝜙

𝑗
(𝜏) + 𝜙

𝑘
(𝜏))) sin (𝜃

𝑗
(𝜏))

⋅ sin (𝜃
𝑘
(𝜏))

𝑘−1

∏

𝑙=𝑗+1

(− cos (𝜃
𝑙
(𝜏))) − ℎ

𝑀

∑

𝑗=1

cos (𝜃
𝑗
(𝜏)) .

(47)

4. Simultaneous Diagonalisation of
the Quantum Hamiltonian and
the Transfer Matrix

This section presents a particular type of equivalence between
one-dimensional quantum and two-dimensional classical
models, established by commuting the quantumHamiltonian
with the transfer matrix of the classical system under certain
parameter relations between the corresponding systems.
Suzuki [2] used this method to prove an equivalence between
the one-dimensional generalised quantum 𝑋𝑌 model and
the two-dimensional Ising and dimer models under specific
parameter restrictions between the two systems. In particular
he proved that this equivalence holds when the quantum
system is restricted to nearest neighbour or nearest and next
nearest neighbour interactions.

Here we extend the work of Suzuki [2], establishing this
type of equivalence between the class of quantum spin chains
(1) for all interaction lengths when the system is restricted to
possessing symmetries corresponding to that of the unitary
group only7 and the two-dimensional Ising and dimermodels
under certain restrictions amongst coupling parameters. For
the Ising model we use both transfer matrices forming two
separate sets of parameter relations under which the systems
are equivalent.Where possible, we connect critical properties
of the corresponding systems, providing a pathway with
which to show that the critical properties of these classical
systems are also influenced by symmetry.

All discussions regarding the general class of quantum
systems (1) in this section refer to the family corresponding
to 𝑈(𝑁) symmetry only, in which case, we find that

[Hqu,Vcl] = 0, (48)

under appropriate relationships amongst parameters of the
quantum and classical systems, when Vcl is the transfer
matrix for either the two-dimensional Ising model with
Hamiltonian given by

H = −

𝑁

∑

𝑖

𝑀

∑

𝑗

(𝐽
1
𝑠
𝑖,𝑗
𝑠
𝑖+1,𝑗

+ 𝐽
2
𝑠
𝑖,𝑗
𝑠
𝑖,𝑗+1
) , (49)

or the dimer model.
A dimer is a rigid rod covering exactly two neighbouring

vertices either vertically or horizontally. The model we refer
to is one consisting of a square planar lattice with𝑁 rows and
𝑀 columns, with an allowed configuration being when each
of the𝑁𝑀 vertices is covered exactly once such that

2ℎ + 2V = 𝑁𝑀, (50)

where ℎ and V are the number of horizontal and vertical
dimers, respectively. The partition function is given by

𝑍 = ∑

allowed configs
𝑥
ℎ

𝑦
V
= 𝑦

𝑀𝑁/2

∑

allowed configs
𝛼
ℎ

, (51)

where 𝑥 and 𝑦 are the appropriate “activities” and 𝛼 = 𝑥/𝑦.
The transform used to diagonalise both of these classical

systems as well as the class of quantum spin chains (1) can be
written as

𝜂
†

𝑞
=
𝑒
−𝑖𝜋/4

√𝑀
∑

𝑗

𝑒
−(2𝜋𝑖/𝑀)𝑞𝑗

(𝑏
†

𝑗
𝑢
𝑞
+ 𝑖𝑏

𝑗
V
𝑞
) ,

𝜂
𝑞
=
𝑒
𝑖𝜋/4

√𝑀
∑

𝑗

𝑒
(2𝜋𝑖/𝑀)𝑞𝑗

(𝑏
𝑗
𝑢
𝑞
− 𝑖𝑏

†

𝑗
V
𝑞
) ,

(52)

where the 𝜂
𝑞
s are the Fermi operators in which the systems

are left in diagonal form. This diagonal form is given by (3)
for the quantum system and for the transfer matrix for the
Ising model by8 [20]

V+(−)

= (2 sinh 2𝐾
1
)
𝑁/2

𝑒
−∑
𝑞
𝜖𝑞(𝜂
†

𝑞
𝜂𝑞−1/2), (53)

where𝐾
𝑖
= 𝛽𝐽

𝑖
and 𝜖

𝑞
is the positive root of9

cosh 𝜖
𝑞
= cosh 2𝐾∗

1
cosh 2𝐾

2

− sinh 2𝐾∗

1
sinh 2𝐾

2
cos 𝑞.

(54)

The dimer model on a two-dimensional lattice was first
solved byKasteleyn [21] via a combinatorialmethod reducing
the problem to the evaluation of a Pfaffian. Lieb [22] later
formulated the dimer-monomer problem in terms of transfer
matrices such thatVcl = V2

𝐷
is left in the diagonal form given

by

V2

𝐷

= ∏

0≤𝑞≤𝜋

(𝜆
𝑞
(𝜂

†

𝑞
𝜂
𝑞
+ 𝜂

†

−𝑞
𝜂
−𝑞
− 1) + (1 + 2𝛼

2sin2

𝑞)) ,
(55)
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with

𝜆
𝑞
= 2𝛼 sin 𝑞 (1 + 𝛼2sin2

𝑞)
1/2

. (56)

For the class of quantum spin chains (1) as well as each
of these classical models we have that the ratio of terms in
transform (52) is given by

2V
𝑞
𝑢
𝑞

𝑢2
𝑞
− V2

𝑞

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

𝑎
𝑞

𝑏
𝑞

for Hqu

sin 𝑞
cosh 2𝐾∗

1
cos 𝑞 − sinh 2𝐾∗

1
coth 2𝐾

2

for V,

sin 𝑞 (1 − tanh 2𝐾∗

1
tanh𝐾

2
cos 𝑞)

cos 𝑞 − tanh𝐾
2
tanh 2𝐾∗

1
cos2𝑞 − tanh 2𝐾∗

1
/ sinh 2𝐾

2

for V

,

−
1

𝛼 sin 𝑞
for V2

𝐷
,

(57)

which as we show in the following sections will provide us
with relationships between parameters under which these
classical systems are equivalent to the quantum systems.

4.1.The IsingModel with TransferMatrixV. We see from (57)
that the Hamiltonian (1) commutes with the transfer matrix
V if we require that

𝑎
𝑞

𝑏
𝑞

=
sin 𝑞

cosh 2𝐾∗

1
cos 𝑞 − sinh 2𝐾∗

1
coth 2𝐾

2

. (58)

This provides us with the following relations between
parameters under which this equivalence holds10:

sinh 2𝐾∗

1
coth 2𝐾

2
= −
𝑎 (𝐿 − 1)

𝑏 (𝐿)
,

tanh2𝐾∗

1
=
𝑎 (𝐿) − 𝑏 (𝐿)

𝑎 (𝐿) + 𝑏 (𝐿)
,

𝑎 (𝐿 − 1)

𝑎 (𝐿) + 𝑏 (𝐿)
= − coth 2𝐾

2
tanh𝐾∗

1
,

(59)

or inversely as

cosh 2𝐾∗

1
=
𝑎 (𝐿)

𝑏 (𝐿)
,

tanh 2𝐾
2
= −

1

𝑎 (𝐿 − 1)

√(𝑎 (𝐿))
2

− (𝑏 (𝐿))
2

,

(60)

where

𝑎 (𝐿) = 𝑎 (𝐿)

[𝐿/2]

∑

𝑙=0

(
𝐿

2𝑙
) ,

𝑏 (𝐿) = 𝑏 (𝐿)

[(𝐿−1)/2]

∑

𝑙=0

(
𝐿

2𝑙 + 1
) ,

𝑎 (0) = Γ.

(61)

From (60) we see that this equivalence holds when
𝑎 (𝐿)

𝑏 (𝐿)
≥ 1,

𝑎
2

(𝐿) ≤ 𝑎
2

(𝐿 − 1) + 𝑏
2

(𝐿) .

(62)

For 𝐿 > 1, we also have the added restrictions on the
parameters that

𝐿

∑

𝑘=1

𝑏 (𝑘)

[(𝐿−1)/2]

∑

𝑙=0

(
𝑘

2𝑙 + 1
)

𝑙

∑

𝑖=1

(−1)
𝑖 cos𝑘−2𝑖𝑞

+

𝐿−1

∑

𝑘=1

𝑏 (𝑘) cos𝑘𝑞 = 0,

(63)

Γ +

𝐿−2

∑

𝑘=1

𝑎 (𝑘) cos𝑘𝑞

+

𝐿

∑

𝑘=1

𝑎 (𝑘)

[𝑘/2]

∑

𝑙=0

(
𝑘

2𝑙
)

𝑙

∑

𝑖=1

(
𝑙

𝑖
) (−1)

𝑖 cos𝐿−2𝑖𝑞 = 0,

(64)

which implies that all coefficients of cos𝑖𝑞 for 0 ≤ 𝑖 < 𝐿 in
(63) and of cos𝑖𝑞 for 0 ≤ 𝑖 < 𝐿 − 1 in (64) are zero11.

When only nearest neighbour interactions are present in
(1) (𝐿 = 1), with 𝑎(𝑘) = 𝑏(𝑘) = 0 for 𝑘 ̸= 1, we recover Suzuki’s
result [2].

The critical properties of the class of quantum systems can
be analysed from the dispersion relation (4), which under the
above parameter restrictions is given by


Λ

𝑞


= 2

𝑝+1

cos(𝐿−1)𝑞

⋅ ((𝑎 (𝐿) cos 𝑞 + 𝑎 (𝐿 − 1))2 + 𝑏
2

(𝐿) sin2

𝑞)

1/2

,

(65)

which is gapless for 𝐿 > 1 for all parameter values.
The critical temperature for the Ising model [20] is given

by

𝐾
∗

1
= 𝐾

2
, (66)
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which using (59) and (60) gives

𝑎 (𝐿) = ±𝑎 (𝐿 − 1) . (67)

This means that (65) becomes


Λ

𝑞


= 2

𝑝+1

𝑎 (𝐿) cos(𝐿−1)𝑞

⋅ ((cos 𝑞 ± 1)2 + (𝑏 (𝐿)
𝑎 (𝐿)

)

2

sin2

𝑞)

1/2

,

(68)

which is now gapless for all 𝐿 > 1, and, for 𝐿 = 1, (67)
is the well known critical value for the external field for the
quantum𝑋𝑌model.

The correlation function between two spins in the same
row in the classical Ising model at finite temperature can
also be written in terms of those in the ground state of the
quantum model

⟨𝜎
𝑥

𝑗,𝑘
𝜎
𝑥

𝑗+𝑟,𝑘
⟩
Is
= ⟨Ψ

0

V
−1/2

1
𝜎
𝑥

𝑗
𝜎
𝑥

𝑗+𝑟
V1/2

1

Ψ0
⟩

= ⟨Φ
0

V
−1/2

1
𝜎
𝑥

𝑗
𝜎
𝑥

𝑗+𝑟
V1/2

1

Φ0
⟩

= ⟨(V−1/2

1
𝜎
𝑥

𝑗
V1/2

1
) (V−1/2

1
𝜎
𝑥

𝑗+𝑟
V1/2

1
)⟩

qu

= cosh2𝐾∗

1
⟨𝜎

𝑥

𝑗
𝜎
𝑥

𝑗+𝑟
⟩
qu

− sinh2𝐾∗

1
⟨𝜎

𝑦

𝑗
𝜎
𝑦

𝑗+𝑟
⟩
qu
,

(69)

using the fact that ⟨𝜎𝑥
𝑗
𝜎
𝑦

𝑗+𝑟
⟩qu = ⟨𝜎

𝑦

𝑗
𝜎
𝑥

𝑗+𝑟
⟩qu = 0, for 𝑟 ̸= 0, and

Ψ
0
= Φ

0
, (70)

from (3), (48), and (53), where Ψ
0
is the eigenvector corre-

sponding to the maximum eigenvalue of V and Φ
0
is the

ground state eigenvector for the general class of quantum
systems (1) (restricted to 𝑈(𝑁) symmetry).

This implies that the correspondence between critical
properties (i.e., correlation functions) is not limited to quan-
tum systems with short range interactions (as Suzuki [2]
found) but also holds for a more general class of quantum
systems for a fixed relationship between the magnetic field
and coupling parameters as dictated by (64) and (63), which
we see from (65) results in a gapless system.

4.2. The Ising Model with Transfer Matrix V. From (57) the
Hamiltonian for the quantum spin chains (1) commutes with
transfer matrix V if we set
𝑎
𝑞

𝑏
𝑞

=
sin 𝑞 (1 − tanh 2𝐾∗

1
tanh𝐾

2
cos 𝑞)

cos 𝑞 − tanh𝐾
2
tanh 2𝐾∗

1
cos2𝑞 − tanh 2𝐾∗

1
/ sinh 2𝐾

2

.

(71)

This provides us with the following relations between
parameters under which this equivalence holds when the

class of quantum spin chains (1) has an interaction length
𝐿 > 1:

tanh 2𝐾∗

1
tanh𝐾

2
= −

𝑏 (𝐿)

𝑏 (𝐿 − 1)
= −

𝑎 (𝐿)

𝑏 (𝐿 − 1)
,

𝑎 (𝐿 − 1)

𝑏 (𝐿 − 1)
= 1,

tanh 2𝐾∗

1

sinh 2𝐾
2

= −
𝑎
∗

(𝐿)

𝑏 (𝐿 − 1)
,

(72)

or inversely as

sinh2𝐾
2
=

𝑎 (𝐿)

2 (𝑎
∗

(𝐿))
,

tanh 2𝐾∗

1
= −

1

𝑎 (𝐿 − 1)
√𝑎 (𝐿) (2𝑎

∗

(𝐿) + 𝑎 (𝐿)),

(73)

where

𝑎
∗

(𝐿) = 𝑎 (𝐿 − 2) − 𝑎 (𝐿)

[𝐿/2]

∑

𝑙=0

(
𝐿

2𝑙
) 𝑙. (74)

From (73) we see that this equivalence holds when

𝑎 (𝐿) (2𝑎
∗

(𝐿) + 𝑎 (𝐿)) ≤ 𝑎
2

(𝐿 − 1) . (75)

When 𝐿 > 2, we have further restrictions upon the
parameters of the class of quantum systems (1); namely,

𝐿−2

∑

𝑘=1

𝑏 (𝑘) cos𝑘𝑞

+

𝐿

∑

𝑘=1

𝑏 (𝑘)

[(𝑘−1)/2]

∑

𝑙=0

(
𝑘

2𝑙 + 1
)

𝑙

∑

𝑖=1

(
𝑙

𝑖
) (−1)

𝑖 cos𝑘−2𝑖𝑞

= 0,

(76)

Γ +

𝐿−3

∑

𝑘=1

𝑘cos𝑘𝑞 −
𝐿−1

∑

𝑘=1

𝑎 (𝑘)

[𝑘/2]

∑

𝑙=0

(
𝑘

2𝑙
) 𝑙cos𝑘−2𝑞

+

𝐿

∑

𝑘=1

𝑎 (𝑘)

[𝑘/2]

∑

𝑙=0

(
𝑘

2𝑙
)

𝑙

∑

𝑖=2

(
𝑙

𝑖
) (−1)

𝑖 cos𝑘−2𝑖𝑞 = 0.

(77)

This implies that coefficients of cos𝑖𝑞 for 0 ≤ 𝑖 < 𝐿 − 1 in (76)
and of cos𝑖𝑞 for 0 ≤ 𝑖 < 𝐿 − 2 in (77) are zero.

Under these parameter restrictions, the dispersion rela-
tion is given by


Λ

𝑞


= 2

𝑝+1

cos𝐿−2𝑞

⋅ ((cos 𝑞 (𝑎 (𝐿) cos 𝑞 + 𝑎 (𝐿 − 1)) + 𝑎∗ (𝐿))2

+ sin2

𝑞 (𝑏 (𝐿) cos 𝑞 + 𝑏 (𝐿 − 1)))
1/2

,

(78)

which is gapless for 𝐿 > 2 for all parameter values.
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The critical temperature for the Isingmodel (66) becomes

−𝑎 (𝐿 − 1) = 𝑎
∗

(𝐿) + 𝑎 (𝐿) , (79)

using (72) and (73).
Substituting (79) into (78) we obtain


Λ

𝑞


= 2

𝑝+1

cos𝐿−2𝑞

⋅ ((𝑎 (𝐿) cos 𝑞 − 𝑎∗ (𝐿))2 (cos 𝑞 − 1)2

+ sin2

𝑞 (𝑏 (𝐿) cos 𝑞 + 𝑏 (𝐿 − 1)))
1/2

,

(80)

which we see is now gapless for all 𝐿 ≥ 2 (for 𝐿 = 2 this clearly
corresponds to a critical value of Γ causing the energy gap to
close).

In this case we can once again write the correlation
function for spins in the same row of the classical Isingmodel
at finite temperature in terms of those in the ground state of
the quantum model as

⟨𝜎
𝑥

𝑗,𝑘
𝜎
𝑥

𝑗+𝑟,𝑘
⟩
Is
= ⟨𝜎

𝑥

𝑗
𝜎
𝑥

𝑗+𝑟
⟩
qu
, (81)

where Ψ

0
is the eigenvector corresponding to the maximum

eigenvalue of V and

Ψ


0
= Φ

0
. (82)

Once more this implies that the correspondence between
critical properties such as correlation functions is not limited
to quantum systems with short range interactions; it also
holds for longer range interactions, for a fixed relationship
between the magnetic field and coupling parameters which
causes the systems to be gapless.

4.3. The Dimer Model with Transfer Matrix V2

𝐷
. In this case,

when the class of quantum spin chains (1) has a maximum
interaction length 𝐿 > 1, it is possible to find relationships
between parameters for which an equivalence is obtained
between it and the two-dimensional dimer model. For details
and examples see Appendix C. When 𝑎(𝑘) = 𝑏(𝑘) = 0, for
𝑘 > 2, we recover Suzuki’s result [2].

Table 1:The structure of functions 𝑎(𝑗) and 𝑏(𝑗) dictating the entries
of matrices A = A − 2ℎI and B = 𝛾B, which reflect the respective
symmetry groups. The 𝑔

𝑙
s are the Fourier coefficients of the symbol

𝑔
M
(𝜃) ofM

𝑀
. Note that, for all symmetry classes other than 𝑈(𝑁),

𝛾 = 0 and thus B = 0.

Classical
compact group

Structure of matrices Matrix entries
𝐴

𝑗,𝑘
(𝐵

𝑗,𝑘
) (M

𝑛
)
𝑗,𝑘

𝑈(𝑁) 𝑎(𝑗 − 𝑘) (𝑏(𝑗 − 𝑘)) 𝑔
𝑗−𝑘

, 𝑗, 𝑘 ≥ 0
𝑂

+

(2𝑁) 𝑎(𝑗 − 𝑘) + 𝑎(𝑗 + 𝑘) 𝑔
0
if 𝑗 = 𝑘 = 0
√2𝑔

𝑙
if

either 𝑗 = 0, 𝑘 = 𝑙
or 𝑗 = 𝑙, 𝑘 = 0

𝑔
𝑗−𝑘
+ 𝑔

𝑗+𝑘
, 𝑗, 𝑘 > 0

Sp(2𝑁) 𝑎(𝑗 − 𝑘) − 𝑎(𝑗 + 𝑘 + 2) 𝑔
𝑗−𝑘
− 𝑔

𝑗+𝑘+2
, 𝑗, 𝑘 ≥ 0

𝑂
±

(2𝑁 + 1) 𝑎(𝑗 − 𝑘) ∓ 𝑎(𝑗 + 𝑘 + 1) 𝑔
𝑗−𝑘
∓ 𝑔

𝑗+𝑘+1
, 𝑗, 𝑘 ≥ 0

𝑂
−

(2𝑁 + 2) 𝑎(𝑗 − 𝑘) − 𝑎(𝑗 + 𝑘 + 2) 𝑔
𝑗−𝑘
− 𝑔

𝑗+𝑘+2
, 𝑗, 𝑘 ≥ 0

Appendices

A. Symmetry Classes

See Table 1.

B. Longer Range Interactions

B.1. Nearest and Next Nearest Neighbour Interactions. The
class of quantum systems (1) with nearest and next nearest
neighbour interactions can be mapped12 onto

Hqu = −
𝑀

∑

𝑗=1

(𝐽
𝑥

𝑗
𝜎
𝑥

𝑗
𝜎
𝑥

𝑗+1
+ 𝐽

𝑦

𝑗
𝜎
𝑦

𝑗
𝜎
𝑦

𝑗+1

− (𝐽
𝑥

𝑗
𝜎
𝑥

𝑗
𝜎
𝑥

𝑗+2
+ 𝐽

𝑦

𝑗
𝜎
𝑦

𝑗
𝜎
𝑦

𝑗+2
) 𝜎

𝑧

𝑗+1
+ ℎ𝜎

𝑧

𝑗
) ,

(B.1)

where 𝐽𝑥
𝑗
= (1/2)(𝐴

𝑗,𝑗+2
+ 𝛾𝐵

𝑗,𝑗+2
) and 𝐽𝑦

𝑗
= (1/2)(𝐴

𝑗,𝑗+2
−

𝛾𝐵
𝑗,𝑗+2
) using the Jordan Wigner transformations (10).

We apply the Trotter-Suzuki mapping to the partition
function for (B.1) with operators in the Hamiltonian ordered
as

𝑍 = lim
𝑛→∞

Tr [𝑒(𝛽qu/𝑛)̂H
𝑥

𝑎 𝑒
(𝛽qu/2𝑛)̂H

𝑧

𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑏 𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑎 𝑒
(𝛽qu/2𝑛)̂H

𝑧

𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑏 ]
𝑛

, (B.2)

where again 𝑎 and 𝑏 are the set of odd and even integers,
respectively, and Ĥ𝜇

𝛼
= ∑

𝑀

𝑗∈𝛼
((1/2)𝐽

𝜇

𝑗
(𝜎

𝜇

𝑗
𝜎
𝜇

𝑗+1
+ 𝜎

𝜇

𝑗+1
𝜎
𝜇

𝑗+2
) −

𝐽
𝜇

𝑗
𝜎
𝜇

𝑗
𝜎
𝑧

𝑗+1
𝜎
𝜇

𝑗+2
) and Ĥ𝑧

= ℎ∑
𝑀

𝑗=1
𝜎
𝑧

𝑗
, for 𝜇 ∈ 𝑥, 𝑦, and once

more 𝛼 denotes either 𝑎 or 𝑏.

For thismodel we need to insert 4𝑛 identity operators into
(B.2). We use 𝑛 in each of the 𝜎𝑥 and 𝜎𝑦 bases and 2𝑛 in the
𝜎
𝑧 basis in the following way:

𝑍 = lim
𝑛→∞

Tr [I
𝜎1
𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑎 I
𝑠1
𝑒
(𝛽qu/2𝑛)̂H

𝑧

𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑏 I
𝜏1
𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑎 I
𝑠1
𝑒
(𝛽qu/2𝑛)̂H

𝑧

𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑏 ]
𝑛

= lim
𝑛→∞

∑

𝜎𝑗,𝑝 ,𝜏𝑗,𝑝,𝑠𝑗,𝑝

𝑛

∏

𝑝=1

[⟨�⃗�
𝑝


𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑎

⃗𝑠
2𝑝−1
⟩ ⟨ ⃗𝑠

2𝑝−1


𝑒
(𝛽qu/2𝑛)̂H

𝑧

𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑏


⃗𝜏
𝑝
⟩ ⟨ ⃗𝜏

𝑝


𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑎

⃗𝑠
2𝑝
⟩ ⟨ ⃗𝑠

2𝑝


𝑒
(𝛽qu/2𝑛)̂H

𝑧

𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑏

�⃗�
𝑝+1
⟩] .

(B.3)
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For this system it is then possible to rewrite the remaining
matrix elements in (B.3) in complex scalar exponential form
by first writing

⟨�⃗�
𝑝


𝑒
(𝛽/𝑛)

̂H𝑥
𝑎

⃗𝑠
2𝑝−1
⟩ ⟨ ⃗𝑠

2𝑝−1


𝑒
(𝛽qu/2𝑛)̂H

𝑧

𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑏


⃗𝜏
𝑝
⟩ ⟨ ⃗𝜏

2𝑝−1


𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑎

⃗𝑠
2𝑝
⟩ ⟨ ⃗𝑠

2𝑝


𝑒
(𝛽qu/2𝑛)̂H

𝑧

𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑏

�⃗�
2𝑝
⟩

= 𝑒
(𝛽qu/𝑛)H

𝑥

𝑎
(𝑝)

𝑒
(𝛽qu/2𝑛)H

𝑧
(2𝑝−1)

𝑒
(𝛽qu/𝑛)H

𝑦

𝑏
(𝑝)

𝑒
(𝛽qu/𝑛)H

𝑦

𝑎
(𝑝)

𝑒
(𝛽qu/2𝑛)H

𝑧
(2𝑝)

𝑒
(𝛽qu/𝑛)H

𝑥

𝑏
(𝑝)

⟨�⃗�
𝑝
| ⃗𝑠

2𝑝−1
⟩ ⟨ ⃗𝑠

2𝑝−1
| ⃗𝜏

𝑝
⟩ ⟨ ⃗𝜏

𝑝
| ⃗𝑠

2𝑝
⟩

⋅ ⟨ ⃗𝑠
2𝑝
| �⃗�

𝑝+1
⟩ ,

(B.4)

where H𝑥

𝛼
(𝑝) = ∑

𝑀

𝑗∈𝛼
((1/2)𝐽

𝑥

𝑗
(𝜎

𝑗,𝑝
𝜎
𝑗+1,𝑝

+ 𝜎
𝑗+1,𝑝

𝜎
𝑗+2,𝑝

) +

𝐽
𝑥

𝑗+1
𝜎
𝑗,𝑝
𝑠
𝑗+1,𝑝

𝜎
𝑗+2,𝑝

), H𝑦

𝛼
(𝑝) = ∑

𝑀

𝑗∈𝛼
((1/2)𝐽

𝑦

𝑗
(𝜏

𝑗,𝑝
𝜏
𝑗+1,𝑝

+

𝜏
𝑗+1,𝑝

𝜏
𝑗+2,𝑝

) + 𝐽
𝑦

𝑗+1
𝜏
𝑗,𝑝
𝑠
𝑗+1,𝑝

𝜏
𝑗+2,𝑝

), andH𝑧

(𝑝) = ∑
𝑀

𝑗=1
𝑠
𝑗,𝑝
. We

can then evaluate the remaining matrix elements as

⟨�⃗�
𝑝
| ⃗𝑠

2𝑝−1
⟩ ⟨ ⃗𝑠

2𝑝−1
| ⃗𝜏

𝑝
⟩ ⟨ ⃗𝜏

2𝑝−1
| ⃗𝑠

2𝑝
⟩ ⟨ ⃗𝑠

2𝑝
| �⃗�

𝑝+1
⟩

=
1

24𝑀

⋅

𝑀

∏

𝑗=1

𝑒
(𝑖𝜋/4)(−𝑠𝑗,2𝑝−1+𝑠𝑗,2𝑝+𝜎𝑗,𝑝𝑠𝑗,2𝑝−1−𝜎𝑗,𝑝+1𝑠2𝑝+𝜏𝑗,𝑝(𝑠𝑗,2𝑝−𝑠𝑗,2𝑝−1)).

(B.5)

Thus we obtain a partition function with the same form
as that corresponding to a class of two-dimensional classical
Ising type systems on𝑀×4𝑛 latticewith classicalHamiltonian
Hcl given by

− 𝛽clHcl =
𝛽qu

𝑛

𝑛

∑

𝑝=1

(∑

𝑗∈𝑎

(
𝐽
𝑥

𝑗

2
(𝜎

𝑗,𝑝
𝜎
𝑗+1,𝑝

+ 𝜎
𝑗+1,𝑝

𝜎
𝑗+2,𝑝

) − 𝐽
𝑥

𝑗+1
𝜎
𝑗,𝑝
𝑠
𝑗+1,𝑝

𝜎
𝑗+2,𝑝

)

+∑

𝑗∈𝑏

(

𝐽
𝑦

𝑗

2
(𝜏

𝑗,𝑝
𝜏
𝑗+1,𝑝

+ 𝜏
𝑗+1,𝑝

𝜏
𝑗+2,𝑝

) − 𝐽
𝑦

𝑗+1
𝜏
𝑗,𝑝
𝑠
𝑗+1,2𝑝−1

𝜏
𝑗+2,𝑝

)

+ ∑

𝑗∈𝑎

(

𝐽
𝑦

𝑗

2
(𝜏

𝑗,𝑝
𝜏
𝑗+1,𝑝

+ 𝜏
𝑗+1,𝑝

𝜏
𝑗+2,𝑝

) − 𝐽
𝑦

𝑗+1
𝜏
𝑗,𝑝
𝑠
𝑗+1,2𝑝

𝜏
𝑗+2,𝑝

)

+∑

𝑗∈𝑏

(
𝐽
𝑥

𝑗

2
(𝜎

𝑗,𝑝+1
𝜎
𝑗+1,𝑝+1

+ 𝜎
𝑗+1,𝑝+1

𝜎
𝑗+2,𝑝+1

) − 𝐽
𝑥

𝑗+1
𝜎
𝑗,𝑝+1

𝑠
𝑗+1,2𝑝

𝜎
𝑗+2,𝑝+1

))

+

𝑛

∑

𝑝=1

(

𝑀

∑

𝑗=1

((
𝛽quℎ

2𝑛
−
𝑖𝜋

4
) 𝑠

𝑗,2𝑝
+ (
𝛽quℎ

2𝑛
+
𝑖𝜋

4
) 𝑠

𝑗,2𝑝
) +

𝑀

∑

𝑗=1

𝑖𝜋

4
(𝜎

𝑗,𝑝
𝑠
𝑗,2𝑝−1

− 𝜎
𝑗,𝑝+1

𝑠
2𝑝
+ 𝜏

𝑗,𝑝
(𝑠

𝑗,2𝑝
− 𝑠

𝑗,2𝑝−1
)))

+ 4𝑛𝑀 ln 2.

(B.6)

A schematic representation of this model on a two-
dimensional lattice is given in Figure 5, with a yellow
border representing a unit cell which can be repeated in
either direction. The horizontal and diagonal blue and red
lines represent interaction coefficients 𝐽𝑥, 𝐽𝑥 and 𝐽𝑦, 𝐽𝑦,
respectively, and the imaginary interaction coefficients are
represented by the dotted green lines.There is also a complex
magnetic field term ((𝛽qu/2𝑛)ℎ ± 𝑖𝜋/4) applied to each site in
every second row as represented by the black circles.

This mapping holds in the limit 𝑛 → ∞, which
would result in coupling parameters (𝛽qu/𝑛)𝐽

𝑥, (𝛽qu/𝑛)𝐽
𝑦,

(𝛽qu/𝑛)𝐽
𝑥, (𝛽qu/𝑛)𝐽

𝑦, and (𝛽qu/𝑛)ℎ → 0 unless we also take
𝛽qu → ∞. Therefore this gives us a connection between the
ground state properties of the class of quantum systems and
the finite temperature properties of the classical systems.

Similarly to the nearest neighbour case, the partition
function for this extended class of quantum systems can also
be mapped to a class of classical vertex models (as we saw for
the nearest neighbour case in Section 2.1) or a class of classical
models with up to 6 spin interactions around a plaquette with
some extra constraints applied to the model (as we saw for
the nearest neighbour case in Section 2.1). We will not give
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S1

S2
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S4

𝜎1

𝜏1

𝜎2

𝜏2

1 2 3 4 5 6 7 8

Lattice direction j→

Trotter

direction

p ↓

Figure 5: Lattice representation of a class of classical systems
equivalent to the class of quantum systems (1) restricted to nearest
and next nearest neighbours.

the derivation of these as they are quite cumbersome and
follow the same steps as outlined previously for the nearest
neighbour cases, and instead we include only the schematic
representations of possible equivalent classical lattices. The
interested reader can find the explicit computations in [23].

Firstly in Figure 6 we present a schematic representation
of the latter of these two interpretations, a two-dimensional
lattice of spins which interact with up to 6 other spins around
the plaquettes shaded in grey.

To imagine what the corresponding vertex models would
look like, picture a line protruding from the lattice points
bordering the shaded region and meeting in the middle of
it. A schematic representation of two possible options for this
is shown in Figure 7.

B.2. Long-Range Interactions. For completeness we include
the description of a classical system obtained by apply-
ing the Trotter-Suzuki mapping to the partition function
for the general class of quantum systems (1) without any
restrictions.

We can now apply the Trotter expansion (7) to the quan-
tum partition function with operators in the Hamiltonian
(38) ordered as

𝑍 = lim
𝑛→∞

Tr[

[

𝑀−1

∏

𝑗=1

(𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑗,𝑗+1𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑗,𝑗+2 ⋅ ⋅ ⋅ 𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑗,𝑀𝑒
(𝛽qu/2𝑛(𝑀−1))

̂H𝑧
𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑗,𝑀 ⋅ ⋅ ⋅ 𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑗,𝑗+2𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑗,𝑗+1)]

]

𝑛

= lim
𝑛→∞

Tr[

[

𝑀

∏

𝑗=1

((

𝑀−𝑗

∏

𝑘=1

𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑗,𝑗+𝑘)𝑒
(𝛽qu/2𝑛(𝑀−1))

̂H𝑧
(

𝑀−𝑗−1

∏

𝑘=0

𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑗,𝑀−𝑘))]

]

𝑛

,

(B.7)

where Ĥ
𝜇

𝑗,𝑘
= 𝐽

𝜇

𝑗,𝑘
𝜎
𝜇

𝑗
𝜎
𝜇

𝑘
∏

𝑘−1

𝑙=1
(−𝜎

𝑧

𝑙
) for 𝜇 ∈ 𝑥, 𝑦 and Ĥ𝑧

=

ℎ∑
𝑀

𝑗=1
𝜎
𝑧

𝑗
.

For this model we need to insert 3𝑀𝑛 identity operators,
𝑛𝑀 in each of the 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 bases, into (B.7) in the
following way:

𝑍 = lim
𝑛→∞

Tr[

[

𝑀−1

∏

𝑗=1

(I
𝜎𝑗
(

𝑀−𝑗

∏

𝑘=1

𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑗,𝑗+𝑘)𝑒
(𝛽qu/(𝑀−1)𝑛)

̂H𝑧
I
𝑠𝑗
(

𝑀−𝑗−1

∏

𝑘=0

𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑗,𝑀−𝑘) I
𝜏𝑗
)]

]

𝑛

= lim
𝑛→∞

∑

𝜎𝑗,𝑝 ,𝜏𝑗,𝑝

𝑛−1

∏

𝑝=0

𝑀−1

∏

𝑗=1

(⟨�⃗�
𝑗+𝑗𝑝


(

𝑀−𝑗

∏

𝑘=1

𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑗,𝑗+𝑘)𝑒
(𝛽qu/𝑛(𝑀−1))

̂H𝑧 
⃗𝑠
𝑗+𝑗𝑝
⟩ ⟨ ⃗𝑠

𝑗+𝑗𝑝


(

𝑀−𝑗−1

∏

𝑘=0

𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑗,𝑀−𝑘)

⃗𝜏
𝑗+𝑗𝑝
⟩ ⟨ ⃗𝜏

𝑗+𝑗𝑝
| �⃗�

𝑗+𝑗𝑝+1
⟩) .

(B.8)

For this system it is then possible to rewrite the remaining
matrix elements in (B.8) in complex scalar exponential form
by first writing

⟨�⃗�
𝑗+𝑗𝑝


(

𝑀−𝑗

∏

𝑘=1

𝑒
(𝛽qu/𝑛)̂H

𝑥

𝑗,𝑗+𝑘)𝑒
(𝛽qu/𝑛(𝑀−1))

̂H𝑧 
⃗𝑠
𝑗+𝑗𝑝
⟩

⋅ ⟨ ⃗𝑠
𝑗+𝑗𝑝


(

𝑀−𝑗−1

∏

𝑘=0

𝑒
(𝛽qu/𝑛)̂H

𝑦

𝑗,𝑀−𝑘)

⃗𝜏
𝑗+𝑗𝑝
⟩ ⟨ ⃗𝜏

𝑗+𝑗𝑝
|

�⃗�
𝑗+𝑗𝑝+1

⟩

= 𝑒
(𝛽qu/𝑛)∑

𝑀−𝑗

𝑘=1
(H𝑥
𝑗,𝑗+𝑘

(𝑝)+H
𝑦

𝑗,𝑗+𝑘
(𝑝)+(1/𝑛(𝑀−1))H𝑧)

⟨�⃗�
𝑗+𝑗𝑝

|

⃗𝑠
𝑗+𝑗𝑝
⟩ ⟨ ⃗𝑠

𝑗+𝑗𝑝
| ⃗𝜏

𝑗+𝑗𝑝
⟩ ⟨ ⃗𝜏

𝑗+𝑗𝑝
| �⃗�

𝑗+𝑗𝑝+1
⟩ ,

(B.9)
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Figure 6: Lattice representation of a class of classical systems equivalent to the class of quantum systems (1) restricted to nearest and next
nearest neighbour interactions. The shaded areas indicate which particles interact together.

Figure 7: Possible vertex representations.

where H𝑥

𝑗,𝑘
(𝑝) = ∑

𝑀

𝑘=𝑗+1
𝐽
𝑥

𝑗,𝑘
𝜎
𝑗,𝑝
𝜎
𝑘,𝑝
∏

𝑘−1

𝑙=𝑗+1
(−𝑠

𝑙,𝑝
), H𝑦

𝑗,𝑘
(𝑝) =

∑
𝑀

𝑘=𝑗+1
𝐽
𝑦

𝑗,𝑘
𝜏
𝑗,𝑝
𝜏
𝑘,𝑝
∏

𝑘−1

𝑙=𝑗+1
(−𝑠

𝑙,𝑝
), andH𝑧

𝑝
= ℎ∑

𝑀

𝑗=1
𝜎
𝑧

𝑗,𝑝
. Finally

evaluate the remaining terms as

⟨�⃗�
𝑝
| ⃗𝑠

𝑝
⟩ ⟨ ⃗𝑠

𝑝
| ⃗𝜏

𝑝
⟩ ⟨ ⃗𝜏

𝑝
| �⃗�

𝑝+1
⟩ = (

1

2√2
)

𝑀

⋅

𝑀

∏

𝑗=1

𝑒
(𝑖𝜋/4)((1−𝜎𝑗,𝑝)(1−𝑠𝑗,𝑝)+𝜏𝑗,𝑝(1−𝑠𝑗,𝑝)−𝜎𝑗,𝑝+1𝜏𝑗,𝑝).

(B.10)

The partition function now has the same form as that of a
class of two-dimensional classical Isingmodels on a𝑀×3𝑀𝑛
lattice with classical HamiltonianHcl given by

− 𝛽clHcl =
𝑛−1

∑

𝑝=1

𝑀

∑

𝑗=1

(
𝛽qu

𝑛

𝑀

∑

𝑘=𝑗+1

(𝐽
𝑥

𝑗,𝑘
𝜎
𝑗,𝑗+𝑗𝑝

𝜎
𝑘,𝑗+𝑗𝑝

+ 𝐽
𝑦

𝑗,𝑘
𝜏
𝑗,𝑗+𝑗𝑝

𝜏
𝑘,𝑗+𝑗𝑝

)

𝑘−1

∏

𝑙=𝑗+1

(−𝑠
𝑙,𝑝
) + (

𝛽qu

𝑛 (𝑀 − 1)
ℎ −
𝑖𝜋

4
) 𝑠

𝑗,𝑗+𝑗𝑝

+
𝑖𝜋

4
(1 − 𝜎

𝑗,𝑗+𝑗𝑝
+ 𝜏

𝑗,𝑗+𝑗𝑝
+ 𝜎

𝑗,𝑗+𝑗𝑝
𝑠
𝑗,𝑗+𝑗𝑝

− 𝜏
𝑗,𝑗+𝑗𝑝

𝑠
𝑗,𝑗+𝑗𝑝

− 𝜎
𝑗,𝑗+𝑗𝑝+1

𝜏
𝑗,𝑗+𝑗𝑝

)) + 𝑛𝑀
2 ln 1

2√2
.

(B.11)

A schematic representation of this class of classical sys-
tems on a two-dimensional lattice is given in Figure 8 where
the blue and red lines represent interaction coefficients 𝐽𝑥

𝑗,𝑘

and 𝐽𝑦
𝑗,𝑘
, respectively, the black lines are where they are both

present, and the imaginary interaction coefficients are given
by the dotted green lines. The black circles also represent

a complex field ((𝛽qu/𝑛(𝑀 − 1))ℎ − 𝑖𝜋/4) acting on each
individual particle in every second row.

This mapping holds in the limit 𝑛 → ∞, which would
result in coupling parameters (𝛽qu/𝑛)𝐽

𝑥

𝑗,𝑘
, (𝛽qu/𝑛)𝐽

𝑦

𝑗,𝑘
, and

(𝛽qu/𝑛)ℎ → 0 unless we also take 𝛽qu → ∞. Therefore this
gives us a connection between the ground state properties of
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Figure 8: Lattice representation of a classical system equivalent to
the general class of quantum systems.

the quantum system and the finite temperature properties of
the classical system.

C. Systems Equivalent to the Dimer Model

We give here some explicit examples of relationships between
parameters under which our general class of quantum spin
chains (1) is equivalent to the two-dimensional classical dimer
model using transfer matrix V2

𝐷
(55).

(i) When 𝐿 = 1, from (57), we have

−
1

𝛼 sin 𝑞
̸=
𝑏 (1) sin 𝑞

Γ + 𝑎 (1) cos 𝑞
, (C.1)

therefore it is not possible to establish an equivalence
in this case.

(ii) When 𝐿 = 2 from (57) we have

−
1

𝛼 sin 𝑞
=

𝑏 (1)

−2𝑎 (2) sin 𝑞
,

if Γ = −𝑎 (2) , 𝑎 (1) = 𝑏 (2) = 0.

(C.2)

Thus the systems are equivalent under the parameter
relations

𝛼 =
2𝑎 (2)

𝑏 (1)
, Γ = −𝑎 (2) , 𝑎 (1) = 𝑏 (2) = 0. (C.3)

(iii) When 𝐿 = 3 from (57) we have

−
1

𝛼 sin 𝑞
= −

𝑏 (1) − 𝑏 (3) + 𝑏 (2) cos 𝑞
2 sin 𝑞 (𝑎 (2) + 𝑎 (3) cos 𝑞)

,

if Γ = −𝑎 (2) , 𝑎 (1) = −𝑎 (3) , 𝑏 (3) = 0.

(C.4)

Thus the systems are equivalent under the parameter
relations

𝛼 =
2𝑎 (3)

𝑏 (2)
,

𝑎 (2)

𝑎 (3)
=
𝑏 (1) − 𝑏 (3)

𝑏 (2)
,

Γ = −𝑎 (2) , 𝑎 (1) = −𝑎 (3) , 𝑏 (3) = 0.

(C.5)

Therefore we find that in general when 𝐿 > 1, we can use
(57) to prove that we have an equivalence if

−
1

𝛼 sin 𝑞

=
sin 𝑞∑𝑚

𝑘=1
𝑏 (𝑘)∑

[(𝑘−1)/2]

𝑙=0
( 𝑘

2𝑙+1
)∑

𝑙

𝑖=0
( 𝑙
𝑖
) (−1)

−𝑖 cos𝑘−2𝑖−1𝑞
Γ + 𝑎 (1) cos 𝑞 + ∑𝑚

𝑘=2
𝑎 (𝑘)∑

[𝑘/2]

𝑙=0
(−1)

𝑙

( 𝑘

2𝑙
) sin2𝑙

𝑞cos𝑘−2𝑙𝑞
.

(C.6)

We can write the sum in the denominator of (C.6) as

[𝑚/2]

∑

𝑗=1

𝑎 (2𝑗) + cos 𝑞
[𝑚/2]

∑

𝑗=1

𝑎 (2𝑗 + 1) + sin2

𝑞

⋅ (

[𝑚/2]

∑

𝑗=1

𝑎 (2𝑗)

𝑗

∑

𝑖=1

(
𝑗

𝑖
) (−1)

𝑖 sin2(𝑖−1)

𝑞

+ cos 𝑞
[(𝑚−1)/2]

∑

𝑗=1

𝑎 (2𝑗 + 1)

𝑗

∑

𝑖=1

(
𝑗

𝑖
) (−1)

𝑖 sin2(𝑖−1)

𝑞

+

𝑚

∑

𝑘=2

𝑎 (𝑘)

[𝑘/2]

∑

𝑙=1

(−1)
𝑙

(
𝑘

2𝑙
) sin2(𝑙−1)

𝑞cos𝑘−2𝑙𝑞) .

(C.7)

This gives us the following conditions:

Γ = −

[𝑚/2]

∑

𝑗=1

𝑎 (2𝑗) ,

𝑎 (1) = −

[(𝑚+1)/2]

∑

𝑗=1

𝑎 (2𝑗 + 1) = 0.

(C.8)
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We can then rewrite the remaining terms in the denomi-
nator (C.7) as

sin2

𝑞(

[𝑚/2]

∑

𝑗=1

𝑎 (2𝑗)

𝑗

∑

𝑖=1

(
𝑗

𝑖
)

𝑖−1

∑

𝑝=0

(−1)
𝑖+𝑝 cos2𝑝𝑞

+

[(𝑚−1)/2]

∑

𝑗=1

𝑎 (2𝑗 + 1)

𝑗

∑

𝑖=1

(
𝑗

𝑖
)

𝑖−1

∑

𝑝=0

(−1)
𝑖+𝑝 cos2𝑝+1𝑞 +

[(𝑚−1)/2]

∑

𝑗=1

𝑎 (2𝑗 + 1)

𝑗

∑

𝑙=1

(
2𝑗 + 1

2𝑙
)

𝑙−1

∑

𝑝=0

(−1)
𝑝+𝑙 cos2(𝑗−𝑝−1)+1𝑞

+

[𝑚/2]

∑

𝑗=1

𝑎 (2𝑗)

𝑗

∑

𝑙=1

(
2𝑗

2𝑙
)

𝑙−1

∑

𝑝=0

(−1)
𝑝+𝑙 cos2(𝑗−𝑝−1)𝑞) .

(C.9)

Finally we equate coefficients of matching powers of
cos 𝑞 in the numerator in (C.6) and denominator (C.9). For
example, this demands that 𝑏(𝑚) = 0.

Disclosure

No empirical or experimental data were created during this
study.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are grateful to Professor Shmuel Fishman for
helpful discussions and to Professor Ingo Peschel for bringing
some references to their attention. J. Hutchinson is pleased to
thank Nick Jones for several insightful remarks, the EPSRC
for support during her Ph.D., and the Leverhulme Trust
for further support. F. Mezzadri was partially supported by
EPSRC research Grant EP/L010305/1.

Endnotes

1. The thickness 𝐾 of a band matrix is defined by the
condition 𝐴

𝑗,𝑘
= 0 if |𝑗 − 𝑘| > 𝐾, where 𝐾 is a positive

integer.

2. For the other symmetry classes, see [8].

3. This is observed through the structure of matrices 𝐴
𝑗,𝑘

and 𝐵
𝑗,𝑘

summarised in Table 1 inherited by the classical
systems.

4. We can ignore boundary term effects since we are
interested in the thermodynamic limit only.

5. Up to an overall constant.

6. Recall, from the picture on the right in Figure 2, that the
𝜎 and 𝜏 represent alternate rows of the lattice.

7. Thus matrices 𝐴
𝑗,𝑘

and 𝐵
𝑗,𝑘

have Toeplitz structure as
given by Table 1.

8. The superscripts +(−) represent anticyclic and cyclic
boundary conditions, respectively.

9. This is for the symmetrisation V = V1/2

1
V

2
V1/2

1
of

the transfer matrix; the other possibility is with V

=

V1/2

2
V

1
V1/2

2
, whereV

1
= (2 sinh 2𝐾

1
)
𝑀/2

𝑒
−𝐾
∗

1
∑
𝑀

𝑖
𝜎
𝑥

𝑖 ,V
2
=

𝑒
𝐾2 ∑
𝑀

𝑖=1
𝜎
𝑧

𝑖
𝜎
𝑧

𝑖+1 , and tanh𝐾∗

𝑖
= 𝑒

−2𝐾𝑖 .
10. Here we have used De Moivre’s Theorem and the

binomial formula to rewrite the summations in 𝑎
𝑞
and

𝑏
𝑞
(5) as

𝑎
𝑞
= Γ +

𝐿

∑

𝑘=1

𝑎 (𝑘)

[𝑘/2]

∑

𝑙=0

(
𝑘

2𝑙
)

𝑙

∑

𝑖=0

(
𝑙

𝑖
) (−1)

−𝑖 cos𝑘−2𝑖𝑞,

𝑏
𝑞
= tan 𝑞

⋅

𝐿

∑

𝑘=1

𝑏 (𝑘)

[(𝑘−1)/2]

∑

𝑙=0

(
𝑘

2𝑙 + 1
)

𝑙

∑

𝑖=0

(
𝑙

𝑖
) (−1)

−𝑖 cos𝑘−2𝑖𝑞.

(∗)

11. For example, setting the coefficient of (cos 𝑞)0 to zero
implies that Γ = −∑[(𝐿−1)/2]

𝑗=1
(−1)

𝑗

𝑎(2𝑗).

12. Once again we ignore boundary term effects due to our
interest in phenomena in the thermodynamic limit only.
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