1,345 research outputs found

    Gesture analysis for physics education researchers

    Full text link
    Systematic observations of student gestures can not only fill in gaps in students' verbal expressions, but can also offer valuable information about student ideas, including their source, their novelty to the speaker, and their construction in real time. This paper provides a review of the research in gesture analysis that is most relevant to physics education researchers and illustrates gesture analysis for the purpose of better understanding student thinking about physics.Comment: 14 page

    The genealogy of judgement: towards a deep history of academic freedom

    Get PDF
    The classical conception of academic freedom associated with Wilhelm von Humboldt and the rise of the modern university has a quite specific cultural foundation that centres on the controversial mental faculty of 'judgement'. This article traces the roots of 'judgement' back to the Protestant Reformation, through its heyday as the signature feature of German idealism, and to its gradual loss of salience as both a philosophical and a psychological concept. This trajectory has been accompanied by a general shrinking in the scope of academic freedom from the promulgation of world-views to the offering of expert opinion

    Control of Phytoplankton Growth by Iron Supply and Irradiance in the Subantarctic Southern Ocean: Experimental Results From the SAZ Project

    Get PDF
    The influence of irradiance and Fe supply on phytoplankton processes was studied, north (47°S, 142°E) and south (54°S, 142°E) of the Subantarctic Front in austral autumn (March 1998). At both sites, resident cells exhibited nutrient stress (Fv/Fm 0 at 47°S and 9% I0 at 54°S because of MLDs of 40 (47°S) and 90 m (54°S), when these stations were occupied. The greater MLD at 54°S is reflected by tenfold higher cellular chlorophyll a levels in the resident phytoplankton. In the 47°S experiment, chlorophyll a levels increased to \u3e1 μg/L-1 only in the high-Fe treatments, regardless of irradiance levels, suggesting Fe limitation. This trend was also noted for cell abundances, silica production, and carbon fixation rates. In contrast, in the 54°S experiment there were increases in chlorophyll a (to \u3e2 μg/L-1), cell abundances, silica production, and carbon fixation only in the high-light treatments to which Fe had been added, suggesting that Fe and irradiance limit algal growth rates. Irradiance by altering algal Fe quotas is a key determinant of algal growth rate at 54°S (when silicic acid levels are nonlimiting); however, because of the integral nature of Fe/light colimitation and the restricted nature of the current data set, it was not possible to ascertain the relative contributions of Fe and irradiance to the control of phytoplankton growth. On the basis of a climatology of summer mean MLD for subantarctic (SA) waters south of Australia the 47° and 54°S sites appear to represent minimum and maximum MLDs, where Fe and Fe/irradiance, respectively, may limit/colimit algal growth. The implications for changes in the factors limiting algal growth with season in SA waters are discussed

    Control of Phytoplankton Growth by Iron and Silicic Acid Availability in the Subantarctic Ocean: Experimental Results From the SAZ Project

    Get PDF
    Subantarctic Southern Ocean surface waters in the austral summer and autumn are characterized by high concentrations of nitrate and phosphate but low concentrations of dissolved iron (Fe, similar to0.05 nM) and silicic acid (Si, \u3c1 muM). During the Subantarctic Zone AU9706 cruise in March 1998 we investigated the relative importance of Fe and Si in controlling phytoplankton growth and species composition at a station within the subantarctic water mass (46.8degreesS, 142degreesE) using shipboard bottle incubation experiments. Treatments included unamended controls; 1.9 nM added iron (+Fe); 9 muM added silicic acid (+Si); and 1.9 nM addediron plus 9 muM added silicic acid (+Fe+Si). We followed a detailed set of biological and biogeochemical parameters over 8 days. Fe added alone clearly increased community growth rates and nitrate drawdown and altered algal community composition relative to control treatments. Surprisingly, small, lightly silicified pennate diatoms grew when Fe was added either with or without Si, despite the extremely low ambient silicic acid concentrations. Pigment analyses suggest that lightly silicified chrysophytes (type 4 haptophytes) may have preferentially responded to Si added either with or without Fe. However, for many of the parameters measured the +Fe+Si treatments showed large increases relative to both the +Fe and +Si treatments. Our results suggest that iron is the proximate limiting nutrient for chlorophyll production, photosynthetic efficiency, nitrate drawdown, and diatom growth, but that Si also exerts considerable control over algal growth and species composition. Both nutrients together are needed to elicit a maximum growth response, suggesting that both Fe and Si play important roles in structuring the subantarctic phytoplankton community

    Limitation of Algal Growth by Iron Deficiency in the Australian Subantarctic Region

    Get PDF
    In March 1998 we measured iron in the upper water column and conducted iron- and nutrient-enrichment bottle-incubation experiments in the open-ocean Subantarctic region southwest of Tasmania, Australia. In the Subtropical Convergence Zone (∼42°S, 142°E), silicic acid concentrations were low (\u3c 1.5μM) in the upper water column, whereas pronounced vertical gradients in dissolved iron concentration (0.12-0.84 nM) were observed., presumably reflecting the interleaving of Subtropical and Subantarctic waters, and mineral aerosol input. Results of a bottle-incubation experiment performed at this location indicate that phytoplankton growth rates were limited by iron deficiency within the iron-poor layer of the euphotic zone. In the Subantarctic water mass (∼46.8°S, 142°E), low concentrations of dissolved iron (0.05-0.11nM) and silicic acid (\u3c 1μM) were measured throughout the upper water column, and our experimental results indicate that algal growth was limited by iron deficiency. These observations suggest that availability of dissolved iron is a primary factor limiting phytoplankton growth over much of the Subantarctic Southern Ocean in the late summer and autumn

    CO2 Control of Trichodesmium N-2 Fixation, Photosynthesis, Growth rates, and Elemental Ratios: Implications for Past, Present, and Future Ocean Biogeochemistry

    Get PDF
    Diazotrophic marine cyanobacteria in the genus Trichodesmium contribute a large fraction of the new nitrogen entering the oligotrophic oceans, but little is known about how they respond to shifts in global change variables such as carbon dioxide (CO2) and temperature. We compared Trichodesmium dinitrogen (N2) and CO2 fixation rates during steady-state growth under past, current, and future CO2 scenarios, and at two relevant temperatures. At projected CO2 levels of year 2100 (76 Pa, 750 ppm), N2 fixation rates of Pacific and Atlantic isolates increased 35-100%, and CO2 fixation rates increased 15-128% relative to present day CO2 conditions (39 Pa, 380 ppm). CO2 mediated rate increases were of similar relative magnitude in both phosphorus (P)-replete and P-limited cultures, suggesting that this effect may be independent of resource limitation. Neither isolate could grow at 15 Pa (150 ppm) CO2, but N2 and CO2 fixation rates, growth rates, and nitrogen : phosophorus (N : P) ratios all increased significantly between 39 Pa and 152 Pa (1500 ppm). In contrast, these parameters were affected only minimally or not at all by a 4°C temperature change. Photosynthesis versus irradiance parameters, however, responded to both CO2 and temperature but in different ways for each isolate. These results suggest that by the end of this century, elevated CO2 could substantially increase global Trichodesmium N2 and CO2 fixation, fundamentally altering the current marine N and C cycles and potentially driving some oceanic regimes towards P limitation. CO2 limitation of Trichodesmium diazotrophy during past glacial periods could also have contributed to setting minimum atmospheric CO2 levels through downregulation of the biological pump. The relationship between marine N2 fixation and atmospheric CO2 concentration appears to be more complex than previously realized and needs to be considered in the context of the rapidly changing oligotrophic oceans

    Short- and long-term conditioning of a temperate marine diatom community to acidification and warming

    Get PDF
    Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into ‘artificial’ communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned ‘artificial’ community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes

    Olfactory identification in subjective cognitive decline and mild cognitive impairment: Association with tau but not amyloid positron emission tomography

    Get PDF
    Introduction We investigated the association between olfactory identification and Alzheimer's disease biomarkers, including amyloid, tau, and neurodegeneration. Methods Thirty-four older adults, including 19 cognitively normal (CN), 10 subjective cognitive decline (SCD), and 5 mild cognitive impairment, underwent amyloid positron emission tomography, magnetic resonance imaging, and the University of Pennsylvania Smell Identification Test (UPSIT). Twenty-six also underwent tau positron emission tomography. Associations between the UPSIT and regionally sampled amyloid, tau, and temporal atrophy were evaluated. Voxel-wise regression models were also utilized. Analyses were conducted with the full sample and only CN/SCD. Results Lower UPSIT scores were associated with increased temporal and parietal tau burden in regional and voxel-wise analyses in the full sample and in CN and SCD only. Temporal lobe atrophy was associated with lower UPSIT score. Amyloid was not associated with the UPSIT. Discussion Impairment on the UPSIT may be a good marker for tau and neurodegeneration in preclinical or prodromal Alzheimer's disease
    • …
    corecore