656 research outputs found

    Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor

    Full text link
    [EN] The methods currently used for designing a fluidized bed reactor in gasification plants do not meet an integrated methodology that optimizes all the different parameters for its sizing and operational regime. In the case of small-scale (several tens of kWs biomass gasifiers), this design is especially complex, and, for this reason, they have usually been built in a very heuristic trial and error way. In this paper, an integrated methodology tailoring all the different parameters for the design and sizing of a small-scale fluidized bed gasification plants is presented. Using this methodology, a 40 kWth biomass gasification reactor was designed, including the air distribution system. Based on this design, with several simplified assumptions, a reactor was built and commissioned. Results from the experimental tests using this gasifier are also presented in this paper. As a result, it can be said the prototype works properly, and it produces syngas able to produce thermal energy or even electricity.This work was supported in part by the European Commission through GROW GREEN project (Agreement number: 730283-GROW GREEN-H2020-SCC-2016-2017/H2020-SCC-NBS2stage-2016. http://growgreenproject.eu/).Vargas-Salgado, C.; Hurtado-Perez, E.; Alfonso-Solar, D.; Malmquist, A. (2021). Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor. Sustainability. 13(3):1-23. https://doi.org/10.3390/su13031061S123133Anukam, A. I., Goso, B. P., Okoh, O. O., & Mamphweli, S. N. (2017). Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. Journal of Chemistry, 2017, 1-9. doi:10.1155/2017/6478389Yang, S., Wang, H., Wei, Y., Hu, J., & Chew, J. W. (2019). Numerical Investigation of Bubble Dynamics during Biomass Gasification in a Bubbling Fluidized Bed. ACS Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.9b01628Sharma, A., Wang, S., Pareek, V., Yang, H., & Zhang, D. (2014). CFD modeling of mixing/segregation behavior of biomass and biochar particles in a bubbling fluidized bed. Chemical Engineering Science, 106, 264-274. doi:10.1016/j.ces.2013.11.019Nilsson, S., Gómez-Barea, A., Fuentes-Cano, D., & Campoy, M. (2014). Gasification kinetics of char from olive tree pruning in fluidized bed. Fuel, 125, 192-199. doi:10.1016/j.fuel.2014.02.006Fotovat, F., Abbasi, A., Spiteri, R. J., de Lasa, H., & Chaouki, J. (2015). A CPFD model for a bubbly biomass–sand fluidized bed. Powder Technology, 275, 39-50. doi:10.1016/j.powtec.2015.01.005Sant’Anna, M. C. S., Cruz, W. R. dos S., Silva, G. F. da, Medronho, R. de A., & Lucena, S. (2017). Analyzing the fluidization of a gas-sand-biomass mixture using CFD techniques. Powder Technology, 316, 367-372. doi:10.1016/j.powtec.2016.12.023Yang, S., Fan, F., Wei, Y., Hu, J., Wang, H., & Wu, S. (2020). Three-dimensional MP-PIC simulation of the steam gasification of biomass in a spouted bed gasifier. Energy Conversion and Management, 210, 112689. doi:10.1016/j.enconman.2020.112689Qi, T., Lei, T., Yan, B., Chen, G., Li, Z., Fatehi, H., … Bai, X.-S. (2019). Biomass steam gasification in bubbling fluidized bed for higher-H2 syngas: CFD simulation with coarse grain model. International Journal of Hydrogen Energy, 44(13), 6448-6460. doi:10.1016/j.ijhydene.2019.01.146Lim, Y., & Lee, U.-D. (2014). Quasi-equilibrium thermodynamic model with empirical equations for air–steam biomass gasification in fluidized-beds. Fuel Processing Technology, 128, 199-210. doi:10.1016/j.fuproc.2014.07.017Xie, J., Zhong, W., Jin, B., Shao, Y., & Liu, H. (2012). Simulation on gasification of forestry residues in fluidized beds by Eulerian–Lagrangian approach. Bioresource Technology, 121, 36-46. doi:10.1016/j.biortech.2012.06.080Agu, C. E., Pfeifer, C., Eikeland, M., Tokheim, L.-A., & Moldestad, B. M. E. (2019). Detailed One-Dimensional Model for Steam-Biomass Gasification in a Bubbling Fluidized Bed. Energy & Fuels, 33(8), 7385-7397. doi:10.1021/acs.energyfuels.9b01340Kang, P., Hu, X. E., Lu, Y., Wang, K., Zhang, R., Han, L., … Zhou, Y. J. (2020). Modeling and Optimization for Gas Distribution Patterns on Biomass Gasification Performance of a Bubbling Spout Fluidized Bed. Energy & Fuels, 34(2), 1750-1763. doi:10.1021/acs.energyfuels.9b02512Soria-Verdugo, A., Von Berg, L., Serrano, D., Hochenauer, C., Scharler, R., & Anca-Couce, A. (2019). Effect of bed material density on the performance of steam gasification of biomass in bubbling fluidized beds. Fuel, 257, 116118. doi:10.1016/j.fuel.2019.116118Mac an Bhaird, S. T., Hemmingway, P., Walsh, E., Maglinao, A. L., Capareda, S. C., & McDonnell, K. P. (2015). Bubbling fluidised bed gasification of wheat straw–gasifier performance using mullite as bed material. Chemical Engineering Research and Design, 97, 36-44. doi:10.1016/j.cherd.2015.03.010Zaccariello, L., & Mastellone, M. (2015). Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal. Energies, 8(8), 8052-8068. doi:10.3390/en8088052Mac an Bhaird, S. T., Walsh, E., Hemmingway, P., Maglinao, A. L., Capareda, S. C., & McDonnell, K. P. (2014). Analysis of bed agglomeration during gasification of wheat straw in a bubbling fluidised bed gasifier using mullite as bed material. Powder Technology, 254, 448-459. doi:10.1016/j.powtec.2014.01.049Kuo, J.-H., Wey, M.-Y., Lian, Y.-H., & Samaksaman, U. (2014). Gaseous organic emissions during air gasification of woody waste: effect of bed agglomeration/defluidization. Fuel Processing Technology, 128, 104-110. doi:10.1016/j.fuproc.2014.07.008Serrano, D., Sánchez-Delgado, S., Sobrino, C., & Marugán-Cruz, C. (2015). Defluidization and agglomeration of a fluidized bed reactor during Cynara cardunculus L. gasification using sepiolite as a bed material. Fuel Processing Technology, 131, 338-347. doi:10.1016/j.fuproc.2014.11.036Kittivech, T., & Fukuda, S. (2019). Investigating Agglomeration Tendency of Co-Gasification between High Alkali Biomass and Woody Biomass in a Bubbling Fluidized Bed System. Energies, 13(1), 56. doi:10.3390/en13010056Fanelli, E. (2020). CFD Hydrodynamics Investigations for Optimum Biomass Gasifier Design. Processes, 8(10), 1323. doi:10.3390/pr8101323Karatas, H., & Akgun, F. (2018). Experimental results of gasification of walnut shell and pistachio shell in a bubbling fluidized bed gasifier under air and steam atmospheres. Fuel, 214, 285-292. doi:10.1016/j.fuel.2017.10.061Meng, F., Ma, Q., Wang, H., Liu, Y., & Wang, D. (2019). Effect of gasifying agents on sawdust gasification in a novel pilot scale bubbling fluidized bed system. Fuel, 249, 112-118. doi:10.1016/j.fuel.2019.03.107Vijay Kumar, K., Bharath, M., Raghavan, V., Prasad, B. V. S. S. S., Chakravarthy, S. R., & Sundararajan, T. (2017). Gasification of high-ash Indian coal in bubbling fluidized bed using air and steam – An experimental study. Applied Thermal Engineering, 116, 372-381. doi:10.1016/j.applthermaleng.2017.01.102Aydar, E., Gul, S., Unlu, N., Akgun, F., & Livatyali, H. (2014). Effect of the type of gasifying agent on gas composition in a bubbling fluidized bed reactor. Journal of the Energy Institute, 87(1), 35-42. doi:10.1016/j.joei.2014.02.004Ren, J., Cao, J.-P., Zhao, X.-Y., Yang, F.-L., & Wei, X.-Y. (2019). Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426. doi:10.1016/j.rser.2019.109426Koppatz, S., Pfeifer, C., & Hofbauer, H. (2011). Comparison of the performance behaviour of silica sand and olivine in a dual fluidised bed reactor system for steam gasification of biomass at pilot plant scale. Chemical Engineering Journal, 175, 468-483. doi:10.1016/j.cej.2011.09.071Yang, S., Zhou, T., Wei, Y., Hu, J., & Wang, H. (2019). Influence of size-induced segregation on the biomass gasification in bubbling fluidized bed with continuous lognormal particle size distribution. Energy Conversion and Management, 198, 111848. doi:10.1016/j.enconman.2019.111848Rasmussen, N. B. K., & Aryal, N. (2020). Syngas production using straw pellet gasification in fluidized bed allothermal reactor under different temperature conditions. Fuel, 263, 116706. doi:10.1016/j.fuel.2019.116706Xue, G., Kwapinska, M., Horvat, A., Kwapinski, W., Rabou, L. P. L. M., Dooley, S., … Leahy, J. J. (2014). Gasification of torrefied Miscanthus×giganteus in an air-blown bubbling fluidized bed gasifier. Bioresource Technology, 159, 397-403. doi:10.1016/j.biortech.2014.02.094Sarker, S., Bimbela, F., Sánchez, J. L., & Nielsen, H. K. (2015). Characterization and pilot scale fluidized bed gasification of herbaceous biomass: A case study on alfalfa pellets. Energy Conversion and Management, 91, 451-458. doi:10.1016/j.enconman.2014.12.034Zhou, T., Yang, S., Wei, Y., Hu, J., & Wang, H. (2020). Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier. Renewable Energy, 148, 534-547. doi:10.1016/j.renene.2019.10.059González-Vázquez, M., García, R., Pevida, C., & Rubiera, F. (2017). Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass. Energies, 10(3), 306. doi:10.3390/en10030306Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). More efficient biomass gasification via torrefaction. Energy, 31(15), 3458-3470. doi:10.1016/j.energy.2006.03.008Muvhiiwa, R., Kuvarega, A., Llana, E. M., & Muleja, A. (2019). Study of biochar from pyrolysis and gasification of wood pellets in a nitrogen plasma reactor for design of biomass processes. Journal of Environmental Chemical Engineering, 7(5), 103391. doi:10.1016/j.jece.2019.103391Pio, D. T., Tarelho, L. A. C., Tavares, A. M. A., Matos, M. A. A., & Silva, V. (2020). Co-gasification of refused derived fuel and biomass in a pilot-scale bubbling fluidized bed reactor. Energy Conversion and Management, 206, 112476. doi:10.1016/j.enconman.2020.112476Aznar, M. P., Caballero, M. A., Sancho, J. A., & Francés, E. (2006). Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Processing Technology, 87(5), 409-420. doi:10.1016/j.fuproc.2005.09.006Cerone, N., Zimbardi, F., Contuzzi, L., Baleta, J., Cerinski, D., & Skvorčinskienė, R. (2020). Experimental investigation of syngas composition variation along updraft fixed bed gasifier. Energy Conversion and Management, 221, 113116. doi:10.1016/j.enconman.2020.113116Khezri, R., Wan Ab Karim Ghani, W. A., Awang Biak, D. R., Yunus, R., & Silas, K. (2019). Experimental Evaluation of Napier Grass Gasification in an Autothermal Bubbling Fluidized Bed Reactor. Energies, 12(8), 1517. doi:10.3390/en12081517Ge, H., Zhang, H., Guo, W., Song, T., & Shen, L. (2019). System simulation and experimental verification: Biomass-based integrated gasification combined cycle (BIGCC) coupling with chemical looping gasification (CLG) for power generation. Fuel, 241, 118-128. doi:10.1016/j.fuel.2018.11.091Kim, Y. D., Yang, C. W., Kim, B. J., Kim, K. S., Lee, J. W., Moon, J. H., … Lee, U. D. (2013). Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier. Applied Energy, 112, 414-420. doi:10.1016/j.apenergy.2013.03.072Puig-Arnavat, M., Tora, E. A., Bruno, J. C., & Coronas, A. (2013). State of the art on reactor designs for solar gasification of carbonaceous feedstock. Solar Energy, 97, 67-84. doi:10.1016/j.solener.2013.08.001Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. doi:10.1016/j.rser.2014.07.129Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76, 989-1003. doi:10.1016/j.rser.2017.03.112Marchelli, F., Curti, M., Tognin, M., Rovero, G., Moliner, C., Arato, E., & Bosio, B. (2020). Experimental Study on the Solids Residence Time Distribution in Multiple Square-Based Spouted Beds. Energies, 13(18), 4694. doi:10.3390/en13184694Guran, S. (2020). Thermochemical Conversion of Biomass. Practices and Perspectives in Sustainable Bioenergy, 159-194. doi:10.1007/978-81-322-3965-9_8Hernández, J. J., Lapuerta, M., & Barba, J. (2016). Separate effect of H 2 , CH 4 and CO on diesel engine performance and emissions under partial diesel fuel replacement. Fuel, 165, 173-184. doi:10.1016/j.fuel.2015.10.054Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030Montuori, L., Vargas-Salgado, C., & Alcázar-Ortega, M. (2015). Impact of the throat sizing on the operating parameters in an experimental fixed bed gasifier: Analysis, evaluation and testing. Renewable Energy, 83, 615-625. doi:10.1016/j.renene.2015.04.068Alfonso-Solar, D., Vargas-Salgado, C., Sánchez-Díaz, C., & Hurtado-Pérez, E. (2020). Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings. Sustainability, 12(21), 9300. doi:10.3390/su12219300Narváez, I., Orío, A., Aznar, M. P., & Corella, J. (1996). Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality of the Produced Raw Gas. Industrial & Engineering Chemistry Research, 35(7), 2110-2120. doi:10.1021/ie9507540Siedlecki, M., De Jong, W., & Verkooijen, A. H. M. (2011). Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review. Energies, 4(3), 389-434. doi:10.3390/en4030389Geldart, D. (1973). Types of gas fluidization. Powder Technology, 7(5), 285-292. doi:10.1016/0032-5910(73)80037-3Kumar, A., Jones, D., & Hanna, M. (2009). Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies, 2(3), 556-581. doi:10.3390/en20300556“IMERYS” https://imerys-refractoryminerals.com/europe-cis-mena/products/molochite/Wen, C. Y., & Yu, Y. H. (1966). A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12(3), 610-612. doi:10.1002/aic.690120343Chirone, R., Poletto, M., Barletta, D., & Lettieri, P. (2020). The effect of temperature on the minimum fluidization conditions of industrial cohesive particles. Powder Technology, 362, 307-322. doi:10.1016/j.powtec.2019.11.102Lim, M. T., & Alimuddin, Z. (2008). Bubbling fluidized bed biomass gasification—Performance, process findings and energy analysis. Renewable Energy, 33(10), 2339-2343. doi:10.1016/j.renene.2008.01.014Gómez-Barea, A., Ollero, P., & Leckner, B. (2013). Optimization of char and tar conversion in fluidized bed biomass gasifiers. Fuel, 103, 42-52. doi:10.1016/j.fuel.2011.04.042Gómez-Barea, A., & Leckner, B. (2010). Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science, 36(4), 444-509. doi:10.1016/j.pecs.2009.12.002Shi, L., & Northwood, D. O. (1995). The mechanical behavior of an aisi type 310 stainless steel. Acta Metallurgica et Materialia, 43(2), 453-460. doi:10.1016/0956-7151(94)00279-qLao, C., & Chungpaibulpatana, S. (2017). Techno-economic analysis of hybrid system for rural electrification in Cambodia. Energy Procedia, 138, 524-529. doi:10.1016/j.egypro.2017.10.23

    Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings

    Full text link
    [EN] Applications of renewable electricity in cities are mostly limited to photovoltaics, and they need other renewable sources, batteries, and the grid to guarantee reliability. This paper proposes a hybrid system, combining biomass and photovoltaics, to supply electricity to educational buildings. This system is reliable and provides at least 50% of electricity based on renewable sources. Buildings with small (70%) implies high electricity costs.This work was supported in part by the European Commission through project "Holistic And Scalable Solution For Research, Innovation And Education In Energy Tran project" (Agreement number: 837854). This work was supported in part by the European Commission through GROW GREEN project (Agreement number: 730283 - GROW GREEN-H2020-SCC-2016-2017/H2020-SCC-NBS-2stage-2016. http://growgreenproject.eu/). This work was completed in the framework of the activities of the Renewable Area research group of the IUIIE (Instituto Universitario de Investigación en Ingeniería Energética) in regional, national, and international projects. The authors deeply thank the Universitat Politècnica de València, IMPIVA-Generalitat Valenciana, the Spanish Ministry of Science and Technology, and the European Commission for the funded projects coming from this organization.Alfonso-Solar, D.; Vargas-Salgado Carlos; Sánchez-Diaz, C.; Hurtado-Perez, E. (2020). Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings. Sustainability. 12(21):1-14. https://doi.org/10.3390/su12219300S1141221Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030Prasad, M., & Munch, S. (2012). State-level renewable electricity policies and reductions in carbon emissions. Energy Policy, 45, 237-242. doi:10.1016/j.enpol.2012.02.024Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. doi:10.1016/j.esr.2019.01.006Bracco, S. (2020). A Study for the Optimal Exploitation of Solar, Wind and Hydro Resources and Electrical Storage Systems in the Bormida Valley in the North of Italy. Energies, 13(20), 5291. doi:10.3390/en13205291Directorate-General for Energy, EU Commission. Clean Energy for All Europeanshttps://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_enURLÓhAiseadha, C., Quinn, G., Connolly, R., Connolly, M., & Soon, W. (2020). Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018. Energies, 13(18), 4839. doi:10.3390/en13184839Hart, E. K., & Jacobson, M. Z. (2011). A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables. Renewable Energy, 36(8), 2278-2286. doi:10.1016/j.renene.2011.01.015Acevedo-Arenas, C. Y., Correcher, A., Sánchez-Díaz, C., Ariza, E., Alfonso-Solar, D., Vargas-Salgado, C., & Petit-Suárez, J. F. (2019). MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energy Conversion and Management, 186, 241-257. doi:10.1016/j.enconman.2019.02.044Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926-2939. doi:10.1016/j.rser.2012.02.009Bernal-Agustín, J. L., & Dufo-López, R. (2009). Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 13(8), 2111-2118. doi:10.1016/j.rser.2009.01.010Karakoulidis, K., Mavridis, K., Bandekas, D. V., Adoniadis, P., Potolias, C., & Vordos, N. (2011). Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system. Renewable Energy, 36(8), 2238-2244. doi:10.1016/j.renene.2010.12.003Kusakana, K. (2015). Optimal scheduled power flow for distributed photovoltaic/wind/diesel generators with battery storage system. IET Renewable Power Generation, 9(8), 916-924. doi:10.1049/iet-rpg.2015.0027Koutroulis, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80(9), 1072-1088. doi:10.1016/j.solener.2005.11.002Ipsakis, D., Voutetakis, S., Seferlis, P., Stergiopoulos, F., & Elmasides, C. (2009). Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. International Journal of Hydrogen Energy, 34(16), 7081-7095. doi:10.1016/j.ijhydene.2008.06.051Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270-282. doi:10.1016/j.buildenv.2014.06.013HOMER Energyhttps://www.homerenergy.com/Oladigbolu, J. O., Ramli, M. A. M., & Al-Turki, Y. A. (2020). Optimal Design of a Hybrid PV Solar/Micro-Hydro/Diesel/Battery Energy System for a Remote Rural Village under Tropical Climate Conditions. Electronics, 9(9), 1491. doi:10.3390/electronics9091491Hurtado, E., Peñalvo-López, E., Pérez-Navarro, Á., Vargas, C., & Alfonso, D. (2015). Optimization of a hybrid renewable system for high feasibility application in non-connected zones. Applied Energy, 155, 308-314. doi:10.1016/j.apenergy.2015.05.097Kebede, A. A., Berecibar, M., Coosemans, T., Messagie, M., Jemal, T., Behabtu, H. A., & Van Mierlo, J. (2020). A Techno-Economic Optimization and Performance Assessment of a 10 kWP Photovoltaic Grid-Connected System. Sustainability, 12(18), 7648. doi:10.3390/su12187648Hafez, O., & Bhattacharya, K. (2012). Optimal planning and design of a renewable energy based supply system for microgrids. Renewable Energy, 45, 7-15. doi:10.1016/j.renene.2012.01.087European Pellet Report. European Pellet Quality Certification (PELLCERT) project. PellCert. Published on April 2012https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/pellcert_european_pellet_report.pdf/Alfonso, D., Perpiñá, C., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology for optimization of distributed biomass resources evaluation, management and final energy use. Biomass and Bioenergy, 33(8), 1070-1079. doi:10.1016/j.biombioe.2009.04.002Perpiñá, C., Alfonso, D., Pérez-Navarro, A., Peñalvo, E., Vargas, C., & Cárdenas, R. (2009). Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy, 34(3), 555-565. doi:10.1016/j.renene.2008.05.047Technology Roadmap: Delivering Sustainable Bioenergyhttps://www.ieabioenergy.com/publications/technology-roadmap-delivering-sustainable-bioenergy/HOMER Pro 3.14 User Manualhttps://www.homerenergy.com/products/pro/docs/latest/index.htmlLao, C., & Chungpaibulpatana, S. (2017). Techno-economic analysis of hybrid system for rural electrification in Cambodia. Energy Procedia, 138, 524-529. doi:10.1016/j.egypro.2017.10.23

    Methodology to evaluate the feasibility of local biomass resources as a fuel for building boilers. Application to a Mediterranean area

    Full text link
    [EN] The massive implementation of distributed energy resources based on biofuels requires a complex methodology to assess the optimal energy valorization options and economic feasibility. This paper has focused on producing pellets for boilers. The work focuses on the residential and commercial sectors. To consume local biomass, it must be considered the availability of potential customers, biomass availability, properties, and dispersion to evaluate transport cost. The developed methodology was applied to three different counties of the Valencian Community (typical of Mediterranean areas). Biomass resources for different counties have been quantified and characterized regarding key issues as heating value and ash content. Considering every evaluated area (the typical total area in the range 600 to 1800 km2) as a biomass management unit, the impact of pellet production plant size and biomass transport costs for three different counties was evaluated. However, different balances between biomass resources availability and self-consumption potentials are obtained, the economic feasibility of pellet plants was acceptable in the three cases with payback periods from 5 to 6 years.Alfonso-Solar, D.; Vargas-Salgado, C.; Hurtado-Perez, E.; Bastida-Molina, P. (2022). Methodology to evaluate the feasibility of local biomass resources as a fuel for building boilers. Application to a Mediterranean area. Área de Innovación y Desarrollo,S.L. 21-29. http://hdl.handle.net/10251/181099S212

    Light electric vehicle charging strategy for low impact on the grid

    Full text link
    [EN] The alarming increase in the average temperature of the planet due to the massive emission of greenhouse gases has stimulated the introduction of electric vehicles (EV), given transport sector is responsible for more than 25% of the total global CO2 emissions. EV penetration will substantially increase electricity demand and, therefore, an optimization of the EV recharging scenario is needed to make full use of the existing electricity generation system without upgrading requirements. In this paper, a methodology based on the use of the temporal valleys in the daily electricity demand is developed for EVrecharge, avoiding the peak demand hours to minimize the impact on the grid. The methodology assumes three different strategies for the recharge activities: home, public buildings, and electrical stations. It has been applied to the case of Spain in the year 2030, assuming three different scenarios for the growth of the total fleet: low, medium, and high. For each of them, three different levels for the EV penetration by the year 2030 are considered: 25%, 50%, and 75%, respectively. Only light electric vehicles (LEV), cars and motorcycles, are taken into account given the fact that batteries are not yet able to provide the full autonomy desired by heavy vehicles. Moreover, heavy vehicles have different travel uses that should be separately considered. Results for the fraction of the total recharge to be made in each of the different recharge modes are deduced with indication of the time intervals to be used in each of them. For the higher penetration scenario, 75% of the total park, an almost flat electricity demand curve is obtained. Studies are made for working days and for non-working days.One of the authors was supported by the Generalitat Valenciana under the grant ACIF/2018/106.Bastida-Molina, P.; Hurtado-Perez, E.; Pérez Navarro, Á.; Alfonso-Solar, D. (2021). Light electric vehicle charging strategy for low impact on the grid. Environmental Science and Pollution Research. 28(15):18790-18806. https://doi.org/10.1007/s11356-020-08901-2S18790188062815Adnan, N., Nordin S. M., Rahman I., Amini M. H. (2017) A market modeling review study on predicting Malaysian consumer behavior towards widespread adoption of PHEV/EV, Environmental Science and Pollution Research. Springer Verlag, 24(22), pp. 17955–17975. doi: https://doi.org/10.1007/s11356-017-9153-8AECC. (2018). Available at: http://www.aedecc.com/enlaces-de-interes/informacion-estadistica/ ()Ahmadi L, Croiset E, Elkamel A, Douglas P, Unbangluang W, Entchev E (2012) Impact of PHEVs penetration on Ontario’s electricity grid and environmental considerations. Energies 5(12):5019–5037. https://doi.org/10.3390/en5125019Akitt, J. W. (2018) Some observations on the greenhouse effect at the Earth’s surface, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Elsevier, 188, pp. 127–134. doi: https://doi.org/10.1016/J.SAA.2017.06.051Al-Alawi BM, Bradley TH (2013) Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies. Renew Sust Energ Rev 21:190–203. https://doi.org/10.1016/j.rser.2012.12.048Alhazmi YA, Mostafa HA, Salama MMA (2017) Optimal allocation for electric vehicle charging stations using trip success ratio. Int J Electr Power Energy Syst 91:101–116. https://doi.org/10.1016/j.ijepes.2017.03.009Bagher Sadati, S. M., Moshtagh J., Shafie-khah M., Rastgou A., Catalão J. P.S. (2019) Operational scheduling of a smart distribution system considering electric vehicles parking lot: a bi-level approach, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 159–178. doi: https://doi.org/10.1016/J.IJEPES.2018.08.021Baran, R. and Legey, L. F. L. (2013) The introduction of electric vehicles in Brazil: impacts on oil and electricity consumption, Technological Forecasting and Social Change. North-Holland, 80(5), pp. 907–917. doi: https://doi.org/10.1016/J.TECHFORE.2012.10.024Bjerkan, K. Y., Nørbech, T. E. and Nordtømme, M. E. (2016) Incentives for promoting battery electric vehicle (BEV) adoption in Norway, Transportation Research Part D: Transport and Environment. Pergamon, 43, pp. 169–180. doi: https://doi.org/10.1016/J.TRD.2015.12.002Canals Casals, L., Martinez-Laserna E., Amante García B., Nieto N. (2016) Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction, Journal of Cleaner Production. Elsevier, 127, pp. 425–437. doi: https://doi.org/10.1016/J.JCLEPRO.2016.03.120Ceballos Delgado, J. E., Caicedo Bravo, E. and Ospina Arango, S. (2016) A methodological proposal to measure the impact of electric vehicles on the electric grid, Ingeniería. Universidad Distrital Francisco José de Caldas, 21(2), pp. 154–175. doi: https://doi.org/10.14483/udistrital.jour.reving.2016.2.a03Clairand J-M, Rodríguez-García J, Álvarez-Bel C (2018) Electric vehicle charging strategy for isolated systems with high penetration of renewable generation. Energies 11(11):3188. https://doi.org/10.3390/en11113188Dang, Q. (2018) Electric vehicle (EV) charging management and relieve impacts in grids, 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems. doi: https://doi.org/10.1109/PEDG.2018.8447802Dang, Q. and Huo, Y. (2018) Modeling EV fleet load in distribution grids: a data-driven approach, in 2018 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, pp 720–724. doi: https://doi.org/10.1109/ITEC.2018.8450195Danté, A. W., Agbossou K., Kelouwani S., Cardenas A., Bouchard J. (2019) Online modeling and identification of plug-in electric vehicles sharing a residential station, International Journal of Electrical Power & Energy Systems. Elsevier, 108, pp. 162–176. doi: https://doi.org/10.1016/J.IJEPES.2018.12.024Deb S et al (2018) Impact of electric vehicle charging station load on distribution network. Energies 11(1):178. https://doi.org/10.3390/en11010178Desai RR, Chen RB, Armington W (2018) A pattern analysis of daily electric vehicle charging profiles: operational efficiency and environmental impacts. J Adv Transp 2018:1–15. https://doi.org/10.1155/2018/6930932DGT (2017) Vehicle fleet historical data base. Available at: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/series-historicas/ ()DGT (2019) Traffic information. Available at: http://infocar.dgt.es/etraffic/ ()Dijk, M., Orsato, R. J. and Kemp, R. (2013) The emergence of an electric mobility trajectory, Energy Policy. Elsevier, 52, pp. 135–145. doi: https://doi.org/10.1016/J.ENPOL.2012.04.024Eurostat (2018) Database - Eurostat. Available at: https://ec.europa.eu/eurostat/web/lfs/data/database (Accessed: 2 August 2019)Galiveeti, H. R., Goswami, A. K. and Dev Choudhury, N. B. (2018) Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems, Engineering Science and Technology, an International Journal. Elsevier, 21(1), pp. 50–59. doi: https://doi.org/10.1016/J.JESTCH.2018.01.005Gong L et al (2018) Spatial and temporal optimization strategy for plug-in electric vehicle charging to mitigate impacts on distribution network. Energies 11(6):1373. https://doi.org/10.3390/en11061373Hasan, M. A., Frame D. J., Chapman R., Archie K. M. (2019) Emissions from the road transport sector of New Zealand: key drivers and challenges, Environmental Science and Pollution Research. Springer Verlag, 26(23), pp. 23937–23957. doi: https://doi.org/10.1007/s11356-019-05734-6IDAE (2012) Technological electric mobility map. Available at: http://www.idae.es/uploads/documentos/documentos_Movilidad_Electrica_ACC_c603f868.pdf (Accessed: 7 January 2019)INE (2018) Average distance covered by vehicles fleet. Available at: http://www.ine.es/jaxi/Tabla.htm?path=/t25/p500/2008/p10/l0/&file=10020.px&L=0 (Accessed: 30 December 2018)Limmer, S. and Rodemann, T. (2019) Peak load reduction through dynamic pricing for electric vehicle charging, International Journal of Electrical Power & Energy Systems. Elsevier, 113, pp. 117–128. doi: https://doi.org/10.1016/J.IJEPES.2019.05.031Liu Z, Wu Q, Nielsen A, Wang Y (2014) Day-ahead energy planning with 100% electric vehicle penetration in the Nordic Region by 2050. Energies 7(3):1733–1749. https://doi.org/10.3390/en7031733López, M. A., de la Torre S., Martín S., Aguado J.A. (2015) Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support, International Journal of Electrical Power & Energy Systems. Elsevier, 64, pp. 689–698. doi: https://doi.org/10.1016/J.IJEPES.2014.07.065Luca de Tena D, Pregger T (2018) Impact of electric vehicles on a future renewable energy-based power system in Europe with a focus on Germany. Int J Energy Res 42(8):2670–2685. https://doi.org/10.1002/er.4056Mao, D., Gao, Z. and Wang, J. (2019) An integrated algorithm for evaluating plug-in electric vehicle’s impact on the state of power grid assets, International Journal of Electrical Power & Energy Systems. Elsevier, 105, pp. 793–802. doi: https://doi.org/10.1016/J.IJEPES.2018.09.028Martínez-Lao, J. et al. (2017) Electric vehicles in Spain: an overview of charging systems, Renewable and Sustainable Energy Reviews. Pergamon. doi: https://doi.org/10.1016/J.RSER.2016.11.239.Morrissey, P., Weldon, P. and O’Mahony, M. (2016) Future standard and fast charging infrastructure planning: an analysis of electric vehicle charging behaviour, Energy Policy. Elsevier, 89, pp. 257–270. doi: https://doi.org/10.1016/J.ENPOL.2015.12.001Ortega-Vazquez MA, Bouffard F, Silva V (2013) Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement. IEEE Trans Power Syst 28(2):1806–1815. https://doi.org/10.1109/TPWRS.2012.2221750PNIEC (2019) Spanish climate change draft law. Available at: https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-consejo-de-ministros-da-luz-verde-al-anteproyecto-de-ley-de-cambio-climático-/tcm:30-487294 ()REE (2017a) Electrical demand, energy generation structure and CO2 emissions. Available at: https://demanda.ree.es/visiona/peninsula/demanda/total/2018-10-16 ()REE (2017b) Historical data base. Available at: https://www.ree.es/es/estadisticas-del-sistema-electrico-espanol/series-estadisticas/series-estadisticas-nacionales ()REE (2018) Electric mobility guide for local entities. Available at: https://www.ree.es/sites/default/files/downloadable/Guia_movilidad_electrica_para_entidades_locales.pdf (Accessed: 31 July 2019)Su, J., Lie, T. T. and Zamora, R. (2019) Modelling of large-scale electric vehicles charging demand: a New Zealand case study, Electric Power Systems Research. Elsevier, 167, pp. 171–182. doi: https://doi.org/10.1016/J.EPSR.2018.10.030Sundstrom O, Binding C (2012) Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Transactions on Smart Grid 3(1):26–37. https://doi.org/10.1109/TSG.2011.2168431Teixeira ACR, Sodré JR (2018) Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions. Transportation Research Part D: Transport and Environment. Pergamon 59:375–384. https://doi.org/10.1016/J.TRD.2018.01.004Tietge, U., Díaz, S., et al. (2016a) From laboratory to road: a 2016 update of official and “real-world” fuel consumption and CO2 values for passenger cars in Europe, The International Council on Clean Transportation. Available at: https://theicct.org/publications/laboratory-road-2016-updateTietge, U., Mock, P., et al. (2016b) Real-world fuel consumption of popular European passenger car models | International Council on Clean Transportation, The International Council on Clean Transportation. Available at: https://www.theicct.org/publications/real-world-fuel-consumption-popular-european-passenger-car-modelsValsera-Naranjo E, Sumper A, Villafafila-Robles R, Martínez-Vicente D (2012) Probabilistic method to assess the impact of charging of electric vehicles on distribution grids. Energies. Molecular Diversity Preservation International 5(5):1503–1531. https://doi.org/10.3390/en5051503Wang, L. and Chen, B. (2019) Distributed control for large-scale plug-in electric vehicle charging with a consensus algorithm, International Journal of Electrical Power & Energy Systems. Elsevier, 109, pp. 369–383. doi: https://doi.org/10.1016/J.IJEPES.2019.02.020Wang Y, Infield D (2018) Markov chain Monte Carlo simulation of electric vehicle use for network integration studies. International Journal of Electrical Power & Energy Systems. Elsevier 99:85–94. https://doi.org/10.1016/J.IJEPES.2018.01.008Wang X, Wei X, Dai H (2019) Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. Journal of Energy Storage. Elsevier Ltd 21:618–631. https://doi.org/10.1016/j.est.2018.11.020Zhang, K. et al. (2019) Parameter identification and state of charge estimation of NMC cells based on improved ant lion optimizer, Mathematical Problems in Engineering, pp. 1–18. doi: https://doi.org/10.1155/2019/4961045Zhao X, Ma J, Wang S, Ye Y, Wu Y, Yu M (2018a) Developing an electric vehicle urban driving cycle to study differences in energy consumption. Environmental Science and Pollution Research. Springer Verlag 26(14):13839–13853. https://doi.org/10.1007/s11356-018-3541-6Zhao, X., Yu, Q., et al. (2018b) Development of a representative EV urban driving cycle based on a k-means and SVM hybrid clustering algorithm, Journal of Advanced Transportation, pp. 1–18. doi: https://doi.org/10.1155/2018/189075

    Low-cost web-based Supervisory Control and Data Acquisition system for a microgrid testbed: A case study in design and implementation for academic and research applications

    Full text link
    [EN] This paper presents the design and implementation of a low-cost Supervisory Control and Data Acquisition system based on a Web interface to be applied to a Hybrid Renewable Energy System (HRES) microgrid. This development will provide a reliable and low-cost control and data acquisition systems for the Renewable Energy Laboratory a Universitat Politecnica de Valencia (LabDER-UPV) in Spain, oriented to the research on microgrid stability and energy generation. The developed low-cost SCADA operates on a microgrid that incorporates a photovoltaic array, a wind turbine, a biomass gasification plant and a battery bank as an energy storage system. Sensors and power meters for electrical parameters, such as voltage, current, frequency, power factor, power generation, and energy consumption, were processed digitally and integrated into Arduino-based devices. A master device on a Raspberry-PI board was set up to send all this information to a local database (DB), and a MySQL Web-DB linked to a Web SCADA interface, programmed in HTML5. The communications protocols include TCP/IP, I2C, SPI, and Serial communication; Arduino-based slave devices communicate with the master Raspberry-PI using NRF24L01 wireless radio frequency transceivers. Finally, a comparison between a standard SCADA against the developed Web-based SCADA system is carried out. The results of the operative tests and the cost comparison of the own-designed developed Web-SCADA system prove its reliability and low-cost, on average an 86% cheaper than a standard brandmark solution, for controlling, monitoring and data logging information, as well as for local and remote operation system when applied to the HRES microgrid testbed.Vargas Salgado, CA.; Águila-León, J.; Chiñas-Palacios, C.; Hurtado-Perez, E. (2019). Low-cost web-based Supervisory Control and Data Acquisition system for a microgrid testbed: A case study in design and implementation for academic and research applications. Heliyon. 5(9):1-11. https://doi.org/10.1016/j.heliyon.2019.e02474S1115

    Comprehensive Methodology for Sustainable Power Supply in Emerging Countries

    Full text link
    [EN] Electricity has become one of the main driving forces for development, especially in remote areas where the lack of energy is linked to poverty. Traditionally, in these areas power is supplied by grid extension projects, which are expensive, or stand-alone systems based on fossil fuels. An actual alternative to these solutions is community micro-grid projects based on distributed renewable energy sources. However, these solutions need to introduce a holistic approach in order to be successfully implemented in real cases. The main purpose of this research work is the definition and development of a comprehensive methodology to encourage the use of decentralized renewable power systems to provide power supply to non-electrified areas. The methodology follows a top-down approach. Its main novelty is that it interlinks a macro and micro analysis dimension, considering not only the energy context of the country where the area under study is located and its development towards a sustainable scenario; but also the potential of renewable power generation, the demand side management opportunities and the socio-economic aspects involved in the final decision on what renewable energy solution would be the most appropriate for the considered location. The implementation of this methodology provides isolated areas a tool for sustainable energy development based on an environmentally friendly and socially participatory approach. Results of implementing the methodology in a case study showed the importance of introducing a holistic approach in supplying power energy to isolated areas, stating the need for involving all the different stakeholders in the decision-making process. Despite final raking on sustainable power supply solutions may vary from one area to another, the implementation of the methodology follows the same procedure, which makes it an inestimable tool for governments, private investors and local communities.This research was funded by Universitat Politecnica de Valencia and Generalitat Valenciana, grant references SP20180248 and GV/2017/023, respectively.Peñalvo-López, E.; Pérez-Navarro, Á.; Hurtado-Perez, E.; Cárcel Carrasco, FJ. (2019). Comprehensive Methodology for Sustainable Power Supply in Emerging Countries. Sustainability. 11(19):1-22. https://doi.org/10.3390/su11195398S1221119LOKEN, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584-1595. doi:10.1016/j.rser.2005.11.005Cherni, J. A., Dyner, I., Henao, F., Jaramillo, P., Smith, R., & Font, R. O. (2007). Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy, 35(3), 1493-1504. doi:10.1016/j.enpol.2006.03.026Gabaldón-Estevan, D., Peñalvo-López, E., & Alfonso Solar, D. (2018). The Spanish Turn against Renewable Energy Development. Sustainability, 10(4), 1208. doi:10.3390/su10041208Ouyang, W., Cheng, H., Zhang, X., & Yao, L. (2010). Distribution network planning method considering distributed generation for peak cutting. Energy Conversion and Management, 51(12), 2394-2401. doi:10.1016/j.enconman.2010.05.003Chaurey, A., Ranganathan, M., & Mohanty, P. (2004). Electricity access for geographically disadvantaged rural communities—technology and policy insights. Energy Policy, 32(15), 1693-1705. doi:10.1016/s0301-4215(03)00160-5CARCEL CARRASCO, F. J., PEÑALVO LOPEZ, E., & DE MURGA, G. (2018). OFICINAS AUTO-SOSTENIBLES PARA LAS AGENCIAS DE AYUDA INTERNACIONAL EN ZONAS GEOGRÁFICAS REMOTAS. DYNA INGENIERIA E INDUSTRIA, 94(1), 272-277. doi:10.6036/8507Erdinc, O., & Uzunoglu, M. (2012). Optimum design of hybrid renewable energy systems: Overview of different approaches. Renewable and Sustainable Energy Reviews, 16(3), 1412-1425. doi:10.1016/j.rser.2011.11.011Al-falahi Monaaf D.A., Jayasinghe, S. D. G., & Enshaei, H. (2017). A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Conversion and Management, 143, 252-274. doi:10.1016/j.enconman.2017.04.019Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926-2939. doi:10.1016/j.rser.2012.02.009Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030Al-Alawi, A., & Islam, S. . (2004). Demand side management for remote area power supply systems incorporating solar irradiance model. Renewable Energy, 29(13), 2027-2036. doi:10.1016/j.renene.2004.03.006Ardakani, F. J., & Ardehali, M. M. (2014). Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting. Energy Conversion and Management, 78, 745-752. doi:10.1016/j.enconman.2013.11.019Kavrakoǧlu, I., & Kiziltan, G. (1983). Multiobjective strategies in power systems planning. European Journal of Operational Research, 12(2), 159-170. doi:10.1016/0377-2217(83)90219-9Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8(4), 365-381. doi:10.1016/j.rser.2003.12.007Kabak, M., & Dağdeviren, M. (2014). Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Conversion and Management, 79, 25-33. doi:10.1016/j.enconman.2013.11.036Peñalvo-López, E., Cárcel-Carrasco, F., Devece, C., & Morcillo, A. (2017). A Methodology for Analysing Sustainability in Energy Scenarios. Sustainability, 9(9), 1590. doi:10.3390/su9091590HOMER Pro® Microgrid Software, the Micro-Power Optimization Model; HOMER Pro 3.13, HOMER Energyhttps://www.homerenergy.com/products/pro/index.htmlSuper Decisions Softwarehttps://www.superdecisions.com/ENRGYPLAN Advanced Energy System Analysishttp://www.energyplan.eu/LEAP Code Energy Analysishttps://www.energycommunity.org/default.asp?action=introductionRodríguez-García, Ribó-Pérez, Álvarez-Bel, & Peñalvo-López. (2019). Novel Conceptual Architecture for the Next-Generation Electricity Markets to Enhance a Large Penetration of Renewable Energy. Energies, 12(13), 2605. doi:10.3390/en12132605Huld, T., Müller, R., & Gambardella, A. (2012). A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 86(6), 1803-1815. doi:10.1016/j.solener.2012.03.006Fischer, G., & Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy, 20(3), 151-159. doi:10.1016/s0961-9534(00)00074-xHurtado, E., Peñalvo-López, E., Pérez-Navarro, Á., Vargas, C., & Alfonso, D. (2015). Optimization of a hybrid renewable system for high feasibility application in non-connected zones. Applied Energy, 155, 308-314. doi:10.1016/j.apenergy.2015.05.09

    A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine

    Full text link
    [EN] Currently, wind power is the fastest-growing means of electricity generation in the world. To obtain the maximum efficiency from the wind energy conversion system, it is important that the control strategy design is carried out in the best possible way. In fact, besides regulating the frequency and output voltage of the electrical signal, these strategies should also extract energy from wind power at the maximum level of efficiency. With advances in micro-controllers and electronic components, the design and implementation of efficient controllers are steadily improving. This paper presents a maximum power point tracking controller scheme for a small wind energy conversion system with a variable speed permanent magnet synchronous generator. With the controller, the system extracts optimum possible power from the wind speed reaching the wind turbine and feeds it to the grid at constant voltage and frequency based on the AC-DC-AC conversion system. A MATLAB/SimPowerSystems environment was used to carry out the simulations of the system. Simulation results were analyzed under variable wind speed and load conditions, exhibiting the performance of the proposed controller. It was observed that the controllers can extract maximum power and regulate the voltage and frequency under such variable conditions. Extensive results are included in the paper.This work was partially supported by the Spanish Ministry of Education, Culture and Sports-reference FPU16/04282.García-Sánchez, TM.; Mishra, AK.; Hurtado-Perez, E.; Puche-Panadero, R.; Fernández-Guillamón, A. (2020). A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine. Energies. 13(21):1-16. https://doi.org/10.3390/en13215809S1161321Fernández-Guillamón, A., Villena-Lapaz, J., Vigueras-Rodríguez, A., García-Sánchez, T., & Molina-García, Á. (2018). An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems. Energies, 11(6), 1436. doi:10.3390/en11061436Fernández-Guillamón, A., Sarasúa, J. I., Chazarra, M., Vigueras-Rodríguez, A., Fernández-Muñoz, D., & Molina-García, Á. (2020). Frequency control analysis based on unit commitment schemes with high wind power integration: A Spanish isolated power system case study. International Journal of Electrical Power & Energy Systems, 121, 106044. doi:10.1016/j.ijepes.2020.106044Huber, M., Dimkova, D., & Hamacher, T. (2014). Integration of wind and solar power in Europe: Assessment of flexibility requirements. Energy, 69, 236-246. doi:10.1016/j.energy.2014.02.109Fernández-Guillamón, A., Martínez-Lucas, G., Molina-García, Á., & Sarasua, J.-I. (2020). Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems. Sustainability, 12(18), 7750. doi:10.3390/su12187750Fernández‐Guillamón, A., Vigueras‐Rodríguez, A., & Molina‐García, Á. (2019). Analysis of power system inertia estimation in high wind power plant integration scenarios. IET Renewable Power Generation, 13(15), 2807-2816. doi:10.1049/iet-rpg.2019.0220Fernández-Guillamón, A., Das, K., Cutululis, N. A., & Molina-García, Á. (2019). Offshore Wind Power Integration into Future Power Systems: Overview and Trends. Journal of Marine Science and Engineering, 7(11), 399. doi:10.3390/jmse7110399Muñoz-Benavente, I., Hansen, A. D., Gómez-Lázaro, E., García-Sánchez, T., Fernández-Guillamón, A., & Molina-García, Á. (2019). Impact of Combined Demand-Response and Wind Power Plant Participation in Frequency Control for Multi-Area Power Systems. Energies, 12(9), 1687. doi:10.3390/en12091687Gil-García, I. C., García-Cascales, M. S., Fernández-Guillamón, A., & Molina-García, A. (2019). Categorization and Analysis of Relevant Factors for Optimal Locations in Onshore and Offshore Wind Power Plants: A Taxonomic Review. Journal of Marine Science and Engineering, 7(11), 391. doi:10.3390/jmse7110391Molina-Garcia, A., Fernandez-Guillamon, A., Gomez-Lazaro, E., Honrubia-Escribano, A., & Bueso, M. C. (2019). Vertical Wind Profile Characterization and Identification of Patterns Based on a Shape Clustering Algorithm. IEEE Access, 7, 30890-30904. doi:10.1109/access.2019.2902242Global Wind Report 2019https://gwec.net/global-wind-report-2019/Chagas, C. C. M., Pereira, M. G., Rosa, L. P., da Silva, N. F., Freitas, M. A. V., & Hunt, J. D. (2020). From Megawatts to Kilowatts: A Review of Small Wind Turbine Applications, Lessons From The US to Brazil. Sustainability, 12(7), 2760. doi:10.3390/su12072760Culotta, S., Franzitta, V., Milone, D., & Moncada Lo Giudice, G. (2015). Small Wind Technology Diffusion in Suburban Areas of Sicily. Sustainability, 7(9), 12693-12708. doi:10.3390/su70912693Nazir, M. S., Wang, Y., Bilal, M., Sohail, H. M., Kadhem, A. A., Nazir, H. M. R., … Ma, Y. (2020). Comparison of Small-Scale Wind Energy Conversion Systems: Economic Indexes. Clean Technologies, 2(2), 144-155. doi:10.3390/cleantechnol2020010García-Sánchez, T., Muñoz-Benavente, I., Gómez-Lázaro, E., & Fernández-Guillamón, A. (2020). Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips. Energies, 13(16), 4078. doi:10.3390/en13164078Fernández-Guillamón, A., Martínez-Lucas, G., Molina-García, Á., & Sarasua, J. I. (2020). An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation. Energies, 13(13), 3369. doi:10.3390/en13133369Tiwari, R., Padmanaban, S., & Neelakandan, R. (2017). Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System. Energies, 10(10), 1493. doi:10.3390/en10101493Sajadi, M., De Kooning, J. D. M., Vandevelde, L., & Crevecoeur, G. (2019). Harvesting wind gust energy with small and medium wind turbines using a bidirectional control strategy. The Journal of Engineering, 2019(17), 4261-4266. doi:10.1049/joe.2018.8182Chavero-Navarrete, E., Trejo-Perea, M., Jáuregui-Correa, J. C., Carrillo-Serrano, R. V., & Ríos-Moreno, J. G. (2019). Expert Control Systems for Maximum Power Point Tracking in a Wind Turbine with PMSG: State of the Art. Applied Sciences, 9(12), 2469. doi:10.3390/app9122469Orlando, N. A., Liserre, M., Mastromauro, R. A., & Dell’Aquila, A. (2013). A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems. IEEE Transactions on Industrial Informatics, 9(3), 1211-1221. doi:10.1109/tii.2013.2272888Daili, Y., Gaubert, J.-P., Rahmani, L., & Harrag, A. (2019). Quantitative Feedback Theory design of robust MPPT controller for Small Wind Energy Conversion Systems: Design, analysis and experimental study. Sustainable Energy Technologies and Assessments, 35, 308-320. doi:10.1016/j.seta.2019.08.002Zhang, X., Huang, C., Hao, S., Chen, F., & Zhai, J. (2016). An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences. Energies, 9(11), 977. doi:10.3390/en9110977Shafiei, A., Dehkordi, B. M., Kiyoumarsi, A., & Farhangi, S. (2017). A Control Approach for a Small-Scale PMSG-Based WECS in the Whole Wind Speed Range. IEEE Transactions on Power Electronics, 32(12), 9117-9130. doi:10.1109/tpel.2017.2655940Oliveira, T. D., Tofaneli, L. A., & Santos, A. Á. B. (2020). Combined effects of pitch angle, rotational speed and site wind distribution in small HAWT performance. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8). doi:10.1007/s40430-020-02501-4Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., & Raciti Castelli, M. (2018). Small wind turbine effectiveness in the urban environment. Renewable Energy, 129, 102-113. doi:10.1016/j.renene.2018.05.062Jeong, H. G., Seung, R. H., & Lee, K. B. (2012). An Improved Maximum Power Point Tracking Method for Wind Power Systems. Energies, 5(5), 1339-1354. doi:10.3390/en5051339Zhu, Y., Cheng, M., Hua, W., & Wang, W. (2012). A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems. Energies, 5(5), 1398-1412. doi:10.3390/en5051398Chen, J.-H., & Hung, W. (2015). Blade Fault Diagnosis in Small Wind Power Systems Using MPPT with Optimized Control Parameters. Energies, 8(9), 9191-9210. doi:10.3390/en8099191Syahputra, R., & Soesanti, I. (2019). Performance Improvement for Small-Scale Wind Turbine System Based on Maximum Power Point Tracking Control. Energies, 12(20), 3938. doi:10.3390/en12203938Aubrée, R., Auger, F., Macé, M., & Loron, L. (2016). Design of an efficient small wind-energy conversion system with an adaptive sensorless MPPT strategy. Renewable Energy, 86, 280-291. doi:10.1016/j.renene.2015.07.091Lopez-Flores, D. R., Duran-Gomez, J. L., & Chacon-Murguia, M. I. (2020). A Mechanical Sensorless MPPT Algorithm for a Wind Energy Conversion System based on a Modular Multilayer Perceptron and a Processor-in-the-Loop Approach. Electric Power Systems Research, 186, 106409. doi:10.1016/j.epsr.2020.106409Urtasun, A., Sanchis, P., San Martín, I., López, J., & Marroyo, L. (2013). Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking. Renewable Energy, 55, 138-149. doi:10.1016/j.renene.2012.12.035Kot, R., Rolak, M., & Malinowski, M. (2013). Comparison of maximum peak power tracking algorithms for a small wind turbine. Mathematics and Computers in Simulation, 91, 29-40. doi:10.1016/j.matcom.2013.03.010Muhsen, H., Al-Kouz, W., & Khan, W. (2019). Small Wind Turbine Blade Design and Optimization. Symmetry, 12(1), 18. doi:10.3390/sym12010018Qi, Z., & Lin, E. (2012). Integrated power control for small wind power system. Journal of Power Sources, 217, 322-328. doi:10.1016/j.jpowsour.2012.06.039Doll, C. N. H., & Pachauri, S. (2010). Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Policy, 38(10), 5661-5670. doi:10.1016/j.enpol.2010.05.014Zhang, S., & Qi, J. (2011). Small wind power in China: Current status and future potentials. Renewable and Sustainable Energy Reviews, 15(5), 2457-2460. doi:10.1016/j.rser.2011.02.009Rehman, S., & Sahin, A. Z. (2012). Wind power utilization for water pumping using small wind turbines in Saudi Arabia: A techno-economical review. Renewable and Sustainable Energy Reviews, 16(7), 4470-4478. doi:10.1016/j.rser.2012.04.036Park, J. H., Chung, M. H., & Park, J. C. (2016). Development of a small wind power system with an integrated exhaust air duct in high-rise residential buildings. Energy and Buildings, 122, 202-210. doi:10.1016/j.enbuild.2016.04.037Simic, Z., Havelka, J. G., & Bozicevic Vrhovcak, M. (2013). Small wind turbines – A unique segment of the wind power market. Renewable Energy, 50, 1027-1036. doi:10.1016/j.renene.2012.08.038Parag, Y., & Sovacool, B. K. (2016). Electricity market design for the prosumer era. Nature Energy, 1(4). doi:10.1038/nenergy.2016.32Kortabarria, I., Andreu, J., Martínez de Alegría, I., Jiménez, J., Gárate, J. I., & Robles, E. (2014). A novel adaptative maximum power point tracking algorithm for small wind turbines. Renewable Energy, 63, 785-796. doi:10.1016/j.renene.2013.10.036Emejeamara, F. C., Tomlin, A. S., & Millward-Hopkins, J. T. (2015). Urban wind: Characterisation of useful gust and energy capture. Renewable Energy, 81, 162-172. doi:10.1016/j.renene.2015.03.028Britter, R. E., & Hanna, S. R. (2003). FLOW AND DISPERSION IN URBAN AREAS. Annual Review of Fluid Mechanics, 35(1), 469-496. doi:10.1146/annurev.fluid.35.101101.161147Askarov, A., Andreev, M., & Ruban, N. (2020). Impact assessment of full-converter wind turbine generators integration on transients in power systems. THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2019). doi:10.1063/5.0000832Pillay, P., & Krishnan, R. (1988). Modeling of permanent magnet motor drives. IEEE Transactions on Industrial Electronics, 35(4), 537-541. doi:10.1109/41.9176Shariatpanah, H., Fadaeinedjad, R., & Rashidinejad, M. (2013). A New Model for PMSG-Based Wind Turbine With Yaw Control. IEEE Transactions on Energy Conversion, 28(4), 929-937. doi:10.1109/tec.2013.2281814Ata, R., & Kocyigit, Y. (2010). An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. Expert Systems with Applications, 37(7), 5454-5460. doi:10.1016/j.eswa.2010.02.068Anelion SW 3.5 GThttps://www.wind-turbine-models.com/turbines/950-anelion-sw-3.5-gtSalles, M. B. C., Hameyer, K., Cardoso, J. R., Grilo, A. P., & Rahmann, C. (2010). Crowbar System in Doubly Fed Induction Wind Generators. Energies, 3(4), 738-753. doi:10.3390/en3040738Kim, Y.-S., Chung, I.-Y., & Moon, S.-I. (2015). Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds. Energies, 8(2), 1406-1425. doi:10.3390/en8021406Widanagama Arachchige, L., Rajapakse, A., & Muthumuni, D. (2017). Implementation, Comparison and Application of an Average Simulation Model of a Wind Turbine Driven Doubly Fed Induction Generator. Energies, 10(11), 1726. doi:10.3390/en10111726Kim, C., Gui, Y., Zhao, H., & Kim, W. (2020). Coordinated LVRT Control for a Permanent Magnet Synchronous Generator Wind Turbine with Energy Storage System. Applied Sciences, 10(9), 3085. doi:10.3390/app10093085Das, K., Hansen, A. D., & Sørensen, P. E. (2016). Understanding IEC standard wind turbine models using SimPowerSystems. Wind Engineering, 40(3), 212-227. doi:10.1177/0309524x1664205

    Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller

    Full text link
    [EN] Power converters are electronic devices widely applied in industry, and in recent years, for renewable energy electronic systems, they can regulate voltage levels and actuate as interfaces, however, to do so, is needed a controller. Proportional-Integral-Derivative (PID) are applied to power converters comparing output voltage versus a reference voltage to reduce and anticipate error. Using PID controllers may be complicated since must be previously tuned prior to their use. Many methods for PID controllers tunning have been proposed, from classical to metaheuristic approaches. Between the metaheuristic approaches, bio-inspired algorithms are a feasible solution; Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are often used; however, they need many initial parameters to be specified, this can lead to local solutions, and not necessarily the global optimum. In recent years, new generation metaheuristic algorithms with fewer initial parameters had been proposed. The Grey Wolf Optimizer (GWO) algorithm is based on wolves¿ herds chasing habits. In this work, a comparison between PID controllers tunning using GWO, PSO, and GA algorithms for a Boost Converter is made. The converter is modeled by state-space equations, and then the optimization of the related PID controller is made using MATLAB/Simulink software. The algorithm¿s performance is evaluated using the Root Mean Squared Error (RMSE). Results show that the proposed GWO algorithm is a feasible solution for the PID controller tunning problem for power converters since its overall performance is better than the obtained by the PSO and GA.The authors wish to thank the Institute of Energy Engineering of the Polytechnic University of Valencia, Spain, and the Department of Water and Energy Studies of the University of Guadalajara, Mexico, for all their support and collaboration.Águila-León, J.; Chiñas-Palacios, C.; Vargas-Salgado Carlos; Hurtado-Perez, E.; García, EXM. (2021). Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller. Advances in Science, Technology and Engineering Systems Journal. 6(1):619-625. https://doi.org/10.25046/aj060167S61962561J. Aguila-Leon, C.D. Chinas-Palacios, C. Vargas-Salgado, E. Hurtado-Perez, E.X.M. Garcia, "Optimal PID Parameters Tunning for a DC-DC Boost Converter: A Performance Comparative Using Grey Wolf Optimizer, Particle Swarm Optimization and Genetic Algorithms," in 2020 IEEE Conference on Technologies for Sustainability, SusTech 2020, 2020, doi:10.1109/SusTech47890.2020.9150507.H. Sira-Ramírez, R. Silva-Ortigoza, Control Design Techniques in Power Electronic Devices, 2013, doi:10.1017/CBO9781107415324.004.G.A. Raiker, S.R. B, P.C. Ramamurthy, L. Umanand, S.G. Abines, S.G. Vasisht, "Solar PV interface to Grid-Tie Inverter with Current Referenced Boost Converter," in 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), IEEE: 343-348, 2018, doi:10.1109/ICIINFS.2018.8721313.S.E. Babaa, G. El Murr, F. Mohamed, S. Pamuri, "Overview of Boost Converters for Photovoltaic Systems," Journal of Power and Energy Engineering, 06(04), 16-31, 2018, doi:10.4236/jpee.2018.64002.J. Berner, K. Soltesz, T. Hägglund, K.J. Åström, "An experimental comparison of PID autotuners," Control Engineering Practice, 73, 124-133, 2018, doi:10.1016/J.CONENGPRAC.2018.01.006.K. Ogata, Modern Control Engineering, 5th ed., Prentice Hall, 2010.K. Nisi, B. Nagaraj, A. Agalya, "Tuning of a PID controller using evolutionary multi objective optimization methodologies and application to the pulp and paper industry," International Journal of Machine Learning and Cybernetics, 10(8), 2015-2025, 2019, doi:10.1007/s13042-018-0831-8.M.T. Özdemir, D. Öztürk, "Comparative performance analysis of optimal PID parameters tuning based on the optics inspired optimization methods for automatic generation control," Energies, 10(12), 2017, doi:10.3390/en10122134.G.-Q. Zeng, X.-Q. Xie, M.-R. Chen, "An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations," Energies, 10(11), 1840, 2017, doi:10.3390/en10111840.Y. Sawle, S.C. Gupta, A.K. Bohre, "Optimal sizing of standalone PV/Wind/Biomass hybrid energy system using GA and PSO optimization technique," Energy Procedia, 117, 690-698, 2017, doi:10.1016/j.egypro.2017.05.183.S. Surender Reddy, C. Srinivasa Rathnam, "Optimal Power Flow using Glowworm Swarm Optimization," International Journal of Electrical Power & Energy Systems, 80, 128-139, 2016, doi:10.1016/J.IJEPES.2016.01.036.C.Y. Acevedo-arenas, A. Correcher, C. Sánchez-díaz, E. Ariza, D. Alfonso-solar, C. Vargas-salgado, J.F. Petit-suárez, "MPC for optimal dispatch of an AC-linked hybrid PV / wind / biomass / H2 system incorporating demand response," Energy Conversion and Management, 186(February), 241-257, 2019, doi:10.1016/j.enconman.2019.02.044.M. Çelebi, "Efficiency optimization of a conventional boost DC/DC converter," Electrical Engineering, 100(2), 803-809, 2018, doi:10.1007/s00202-017-0552-0.Q.Y. Lu, W. Hu, L. Zheng, Y. Min, M. Li, X.P. Li, W.C. Ge, Z.M. Wang, "Integrated coordinated optimization control of automatic generation control and automatic voltage control in regional power grids," Energies, 5(10), 3817-3834, 2012, doi:10.3390/en5103817.J. Aguila‐Leon, C. Chiñas‐Palacios, E.X.M. Garcia, C. Vargas‐Salgado, "A multimicrogrid energy management model implementing an evolutionary game‐theoretic approach," International Transactions on Electrical Energy Systems, 30(11), 2020, doi:10.1002/2050-7038.12617.Ovat Friday Aje, Anyandi Adie Josephat, "The particle swarm optimization (PSO) algorithm application - A review," Global Journal of Engineering and Technology Advances, 3(3), 001-006, 2020, doi:10.30574/gjeta.2020.3.3.0033.N.K. Jain, U. Nangia, J. Jain, A Review of Particle Swarm Optimization, Journal of The Institution of Engineers (India): Series B, 99(4), 407-411, 2018, doi:10.1007/s40031-018-0323-y.B. Hekimoǧlu, S. Ekinci, S. Kaya, "Optimal PID Controller Design of DC-DC Buck Converter using Whale Optimization Algorithm," in 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018, Institute of Electrical and Electronics Engineers Inc., 2019, doi:10.1109/IDAP.2018.8620833.S. Mirjalili, S.M. Mirjalili, A. Lewis, "Grey Wolf Optimizer," Advances in Engineering Software, 69, 46-61, 2014, doi:10.1016/j.advengsoft.2013.12.007.S.-X. Li, J.-S. Wang, "Dynamic Modeling of Steam Condenser and Design of PI Controller Based on Grey Wolf Optimizer," Mathematical Problems in Engineering, 2015, 1-9, 2015, doi:10.1155/2015/120975.S. Yadav, S.K. Verma, S.K. Nagar, "Optimized PID Controller for Magnetic Levitation System," IFAC-PapersOnLine, 49(1), 778-782, 2016, doi:10.1016/J.IFACOL.2016.03.151.R.H.G. Tan, L.Y.H. Hoo, "DC-DC converter modeling and simulation using state space approach," 2015 IEEE Conference on Energy Conversion (CENCON), (2), 42-47, 2015, doi:10.1109/CENCON.2015.7409511

    Energy sustainability evolution in the Mediterranean Countries and synergies from a global energy scenario for the area

    Full text link
    [EN] Energy supply is essential for the development of any society and search for energy sustainability is a must with poverty reduction and environmental sustainability as the two challenges to consider for any energy scenario. Meanwhile environmental damage receives predominant attention in the energy sustainability analysis, a lack of attention exists to others, such as external dependence for energy supply or availability of enough energy for people. However, these factors also compromise the sustainability of the assumed policies. An analysis considering these three factors has been developed and applied to countries in the Mediterranean area by considering two well-defined zones: the North side with an adequate level of energy consumption, but with excessive CO2 emissions and high external dependence on energy supply; and, by the contrary, the Middle East and North African countries, with a deficit in energy supply, but without problems in CO2 emissions and external energy supply. Results show a requirement of a 100% renewable scenario for the countries in the North area, while those in the MENA need to increase drastically their energy demand with a significant contribution from renewable sources. Assuming a global scenario for the entire area, energy sustainability could be reached with less demanding requirements.This work was partly supported in part by the Spanish Public Administration "Ministerio de Universidades" under the grant Margarita Salas-Universitat Politecnica de Valencia, funded by the European Union-Next Generation EU.Bastida-Molina, P.; Hurtado-Perez, E.; Moros Gómez, MC.; Cárcel-Carrasco, J.; Pérez-Navarro, Á. (2022). Energy sustainability evolution in the Mediterranean Countries and synergies from a global energy scenario for the area. Energy. 252:1-22. https://doi.org/10.1016/j.energy.2022.12406712225

    Study of the Improvement on Energy Efficiency for a Building in the Mediterranean Area by the Installation of a Green Roof System

    Full text link
    [EN] Rooftop gardens ona building have proved to be a good way to improve its storm water management, but many other benefits can be obtained from the installation of these systems, such as reduction of energy consumption, decrease of the heat stress, abatement on CO2 emissions, etc. In this paper, the effect from the presence of these rooftop gardens on abuilding's energy consumption has been investigated by experimental campaigns using a green roof ona public building in a Mediterranean location in Spain. The obtained results demonstrate a substantial improvement by the installation of the green roof onthe building's cooling energy demand for a standard summer day, in the order of 30%, and a reduction, about 15%, in the heating energy demand for a winter day. Thus, given the longer duration of the summer conditions along the year, a noticeable reduction on energy demand could be obtained. Simulation analysis, using commercial software TRNSYS code, previously calibrated using experimental data for typical summer and winter days, allows for the extrapolation to the entire year of these results deducing noticeable improvement in energy efficiency, in the order of 19%, but with an increase of 6% in the peak power during the winter period.This work was supported by the European Union's Horizon 2020 research and innovation programme under the project Green Cities for Climate and Water Resilience, Sustainable Economic Growth, Healthy Citizens and Environments with reference 730283.Peñalvo-López, E.; Cárcel Carrasco, FJ.; Alfonso-Solar, D.; Valencia-Salazar, I.; Hurtado-Perez, E. (2020). Study of the Improvement on Energy Efficiency for a Building in the Mediterranean Area by the Installation of a Green Roof System. Energies. 13(5):1-14. https://doi.org/10.3390/en13051246S114135Jim, C. Y. (2017). Green roof evolution through exemplars: Germinal prototypes to modern variants. Sustainable Cities and Society, 35, 69-82. doi:10.1016/j.scs.2017.08.001Dos Santos, S. M., Silva, J. F. F., dos Santos, G. C., de Macedo, P. M. T., & Gavazza, S. (2019). Integrating conventional and green roofs for mitigating thermal discomfort and water scarcity in urban areas. Journal of Cleaner Production, 219, 639-648. doi:10.1016/j.jclepro.2019.01.068Ferrans, P., Rey, C., Pérez, G., Rodríguez, J., & Díaz-Granados, M. (2018). Effect of Green Roof Configuration and Hydrological Variables on Runoff Water Quantity and Quality. Water, 10(7), 960. doi:10.3390/w10070960Gómez, F., Valcuende, M., Matzarakis, A., & Cárcel, J. (2018). Design of natural elements in open spaces of cities with a Mediterranean climate, conditions for comfort and urban ecology. Environmental Science and Pollution Research, 25(26), 26643-26652. doi:10.1007/s11356-018-2736-1Chen, X., Shuai, C., Chen, Z., & Zhang, Y. (2019). What are the root causes hindering the implementation of green roofs in urban China? Science of The Total Environment, 654, 742-750. doi:10.1016/j.scitotenv.2018.11.051Radhi, H., Sharples, S., Taleb, H., & Fahmy, M. (2017). Will cool roofs improve the thermal performance of our built environment? A study assessing roof systems in Bahrain. Energy and Buildings, 135, 324-337. doi:10.1016/j.enbuild.2016.11.048Baik, J.-J., Kwak, K.-H., Park, S.-B., & Ryu, Y.-H. (2012). Effects of building roof greening on air quality in street canyons. Atmospheric Environment, 61, 48-55. doi:10.1016/j.atmosenv.2012.06.076Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 90, 757-773. doi:10.1016/j.rser.2018.04.006Goussous, J., Siam, H., & Alzoubi, H. (2015). Prospects of green roof technology for energy and thermal benefits in buildings: Case of Jordan. Sustainable Cities and Society, 14, 425-440. doi:10.1016/j.scs.2014.05.012Yang, W., Wang, Z., Cui, J., Zhu, Z., & Zhao, X. (2015). Comparative study of the thermal performance of the novel green (planting) roofs against other existing roofs. Sustainable Cities and Society, 16, 1-12. doi:10.1016/j.scs.2015.01.002Foustalieraki, M., Assimakopoulos, M. N., Santamouris, M., & Pangalou, H. (2017). Energy performance of a medium scale green roof system installed on a commercial building using numerical and experimental data recorded during the cold period of the year. Energy and Buildings, 135, 33-38. doi:10.1016/j.enbuild.2016.10.056Santamouris, M., Pavlou, C., Doukas, P., Mihalakakou, G., Synnefa, A., Hatzibiros, A., & Patargias, P. (2007). Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece. Energy, 32(9), 1781-1788. doi:10.1016/j.energy.2006.11.011Zhao, X., Zuo, J., Wu, G., & Huang, C. (2018). A bibliometric review of green building research 2000–2016. Architectural Science Review, 62(1), 74-88. doi:10.1080/00038628.2018.1485548Feng, C., Meng, Q., & Zhang, Y. (2010). Theoretical and experimental analysis of the energy balance of extensive green roofs. Energy and Buildings, 42(6), 959-965. doi:10.1016/j.enbuild.2009.12.014Tang, X., & Qu, M. (2016). Phase change and thermal performance analysis for green roofs in cold climates. Energy and Buildings, 121, 165-175. doi:10.1016/j.enbuild.2016.03.069Jim, C. Y., & Tsang, S. W. (2011). Ecological energetics of tropical intensive green roof. Energy and Buildings, 43(10), 2696-2704. doi:10.1016/j.enbuild.2011.06.018Bevilacqua, P., Mazzeo, D., Bruno, R., & Arcuri, N. (2016). Experimental investigation of the thermal performances of an extensive green roof in the Mediterranean area. Energy and Buildings, 122, 63-79. doi:10.1016/j.enbuild.2016.03.062Susca, T. (2019). Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, 162, 106273. doi:10.1016/j.buildenv.2019.106273Ávila-Hernández, A., Simá, E., Xamán, J., Hernández-Pérez, I., Téllez-Velázquez, E., & Chagolla-Aranda, M. A. (2020). Test box experiment and simulations of a green-roof: Thermal and energy performance of a residential building standard for Mexico. Energy and Buildings, 209, 109709. doi:10.1016/j.enbuild.2019.109709Tian, Z., Lei, Y., & Gu, X. (2017). Building Energy Impacts of Simple Green Roofs in the Hot Summer and Cold Winter Climate Zone: Suzhou as a Study Case. Procedia Engineering, 205, 2918-2924. doi:10.1016/j.proeng.2017.10.095Coma, J., Pérez, G., Solé, C., Castell, A., & Cabeza, L. F. (2016). Thermal assessment of extensive green roofs as passive tool for energy savings in buildings. Renewable Energy, 85, 1106-1115. doi:10.1016/j.renene.2015.07.07
    corecore