390 research outputs found

    Hard X-ray imaging facility for space shuttle: A scientific and conceptual engineering study

    Get PDF
    A shuttle-accommodated instrument for imaging hard X-rays in the study of nonthermal particles and high temperature particles in various solar and cosmic phenomena was defined and its feasibility demonstrated. The imaging system configuration is described as well as the electronics, aspect systems, mechanical and thermal properties and the ground support equipment

    Solar flare hard X-ray spikes observed by RHESSI: a case study

    Full text link
    In this paper, we analyze hard X-ray spikes observed by RHESSI to understand their temporal, spectral, and spatial properties. A recently developed demodulation code was applied to hard X-ray light curves in several energy bands observed by RHESSI. Hard X-ray spikes were selected from the demodulated flare light curves. We measured the spike duration, the energy-dependent time delay, and count spectral index of these spikes. We also located the hard X-ray source emitting these spikes from RHESSI mapping that was coordinated with imaging observations in visible and UV wavelengths. We identify quickly varying structures of <1 s during the rise of hard X-rays in five flares. These hard X-ray spikes can be observed at photon energies over 100 keV. They exhibit sharp rise and decay with a duration (FWHM) of less than 1 s. Energy-dependent time lags are present in some spikes. It is seen that the spikes exhibit harder spectra than underlying components, typically by 0.5 in the spectral index when they are fitted to power-law distributions. RHESSI clean maps at 25-100 keV with an integration of 2 s centered on the peak of the spikes suggest that hard X-ray spikes are primarily emitted by double foot-point sources in magnetic fields of opposite polarities. With the RHESSI mapping resolution of ~ 4 arsec, the hard X-ray spike maps do not exhibit detectable difference in the spatial structure from sources emitting underlying components. Coordinated high-resolution imaging UV and infrared observations confirm that hard X-ray spikes are produced in magnetic structures embedded in the same magnetic environment of the underlying components. The coordinated high-cadence TRACE UV observations of one event possibly reveal new structures on spatial scales <1-2 arsec at the time of the spike superposed on the underlying component. They are probably sources of hard X-ray spikes.Comment: 20 pages, 11 figure

    A frequency-agile interferometer for solar microwave spectroscopy

    Get PDF
    A high-resolution microwave spectrometer has been developed by converting the Owens Valley solar interferometer to frequency-agile operation. The system uses 27 m antennas equipped with phase-locked receivers which can change their observing frequency in 25 or 50 ms. Microwave spectra between 1 and 18 GHz are obtained in a few seconds by successive observations at up to 86 discrete frequencies. At each frequency the data are equivalent to the total power from each antenna and the interferometric amplitude and phase. All data are fully calibrated with respect to cosmic sources. The instrument was motivated by the need for better microwave spectral resolution for the study of plasma parameters, non-thermal electrons and coronal magnetic field strengths in solar flares and active regions. Early observations with the system are illustrated by a sequence of flare spectra featuring cases with exceptionally narrow continuum bandwidths

    Multiple energetic injections in a strong spike-like solar burst

    Get PDF
    An intense and fast spike-like solar burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which shows remarkable proportionality between hard X-ray and microwave fluxes. The finer time structure were best defined at mm-microwaves. At the peak of the event, the finer structures repeat every 30x60ms. The more slowly varying component with a time scale of about 1 second was identified in microwave hard X-rays throughout the burst duration. It is suggested that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). The relevant parameters of one primary energy release site are estimated both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal. The relation of this figure to global energy considerations is discussed

    First limits on the 3-200 keV X-ray spectrum of the quiet Sun using RHESSI

    Full text link
    We present the first results using the Reuven Ramaty High-Energy Solar Spectroscopic Imager, RHESSI, to observe solar X-ray emission not associated with active regions, sunspots or flares (the quiet Sun). Using a newly developed chopping technique (fan-beam modulation) during seven periods of offpointing between June 2005 to October 2006, we obtained upper limits over 3-200 keV for the quietest times when the GOES12 1-8A flux fell below 10810^{-8} Wm2^{-2}. These values are smaller than previous limits in the 17-120 keV range and extend them to both lower and higher energies. The limit in 3-6 keV is consistent with a coronal temperature 6\leq 6 MK. For quiet Sun periods when the GOES12 1-8A background flux was between 10810^{-8} Wm2^{-2} and 10710^{-7} Wm2^{-2}, the RHESSI 3-6 keV flux correlates to this as a power-law, with an index of 1.08±0.131.08 \pm 0.13. The power-law correlation for microflares has a steeper index of 1.29±0.061.29 \pm 0.06. We also discuss the possibility of observing quiet Sun X-rays due to solar axions and use the RHESSI quiet Sun limits to estimate the axion-to-photon coupling constant for two different axion emission scenarios.Comment: 4 pages, 3 figures, Accepted by ApJ letter

    Temporal Correlation of Hard X-rays and Meter/Decimeter Radio Structures in Solar Flares

    Full text link
    We investigate the relative timing between hard X-ray (HXR) peaks and structures in metric and decimetric radio emissions of solar flares using data from the RHESSI and Phoenix-2 instruments. The radio events under consideration are predominantly classified as type III bursts, decimetric pulsations and patches. The RHESSI data are demodulated using special techniques appropriate for a Phoenix-2 temporal resolution of 0.1s. The absolute timing accuracy of the two instruments is found to be about 170 ms, and much better on the average. It is found that type III radio groups often coincide with enhanced HXR emission, but only a relatively small fraction (\sim 20%) of the groups show close correlation on time scales << 1s. If structures correlate, the HXRs precede the type III emissions in a majority of cases, and by 0.69±\pm0.19 s on the average. Reversed drift type III bursts are also delayed, but high-frequency and harmonic emission is retarded less. The decimetric pulsations and patches (DCIM) have a larger scatter of delays, but do not have a statistically significant sign or an average different from zero. The time delay does not show a center-to-limb variation excluding simple propagation effects. The delay by scattering near the source region is suggested to be the most efficient process on the average for delaying type III radio emission

    Quiet Sun X-rays as Signature for New Particles

    Full text link
    We have studied published data from the Yohkoh solar X-ray mission, with the purpose of searching for signals from radiative decays of new, as yet undiscovered massive neutral particles. This search is based on the prediction that solar axions of the Kaluza-Klein type should result in the emission of X-rays from the Sun direction beyond the limb with a characteristic radial distribution. These X-rays should be observed more easily during periods of quiet Sun. An additional signature is the observed emission of hard X-rays by SMM, NEAR and RHESSI. The recent observation made by RHESSI of a continuous emission from the non-flaring Sun of X-rays in the 3 to ~15 keV range fits the generic axion scenario. This work also suggests new analyses of existing data, in order to exclude instrumental effects; it provides the rationale for targeted observations with present and upcoming (solar) X-ray telescopes, which can provide the final answer on the nature of the signals considered here. Such measurements become more promising during the forthcoming solar cycle minimum with an increased number of quiet Sun periods.Comment: 14 pages, 3 figures; to be published in ApJ. May 20 200

    XMM-Newton observations of the Galactic Supernova Remnant CTB 109 (G109.1-1.0)

    Full text link
    We present the analysis of the X-ray Multi-Mirror Mission (XMM-Newton) European Photon Imaging Camera (EPIC) data of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0). CTB 109 is associated with the anomalous X-ray pulsar (AXP) 1E 2259+586 and has an unusual semi-circular morphology in both the X-ray and the radio, and an extended X-ray bright interior region known as the `Lobe'. The deep EPIC mosaic image of the remnant shows no emission towards the west where a giant molecular cloud complex is located. No morphological connection between the Lobe and the AXP is found. We find remarkably little spectral variation across the remnant given the large intensity variations. All spectra of the shell and the Lobe are well fitted by a single-temperature non-equilibrium ionization model for a collisional plasma with solar abundances (kT = 0.5 - 0.7 keV, tau = n_e t = 1 - 4 x 10^11 s cm^-3, N_H = 5 - 7 x 10^21 cm^-2). There is no indication of nonthermal emission in the Lobe or the shell. We conclude that the Lobe originated from an interaction of the SNR shock wave with an interstellar cloud. Applying the Sedov solution for the undisturbed eastern part of the SNR, and assuming full equilibration between the electrons and ions behind the shock front, the SNR shock velocity is derived as v_s = 720 +/- 60 km s^-1, the remnant age as t = (8.8 +/- 0.9) x 10^3 d_3 yr, the initial energy as E_0 = (7.4 +/- 2.9) x 10^50 d_3^2.5 ergs, and the pre-shock density of the nuclei in the ambient medium as n_0 = (0.16 +/- 0.02) d_3^-0.5 cm^-3, at an assumed distance of D = 3.0 d_3 kpc. Assuming CTB 109 and 1E 2259+586 are associated, these values constrain the age and the environment of the progenitor of the SNR and the pulsar.Comment: Accepted for publication in ApJ. 9 figures. Figs. 1 + 2 are in color (fig1.jpg, fig2.jpg
    corecore