5 research outputs found

    Enhanced Conversion Efficiency of Cu(In,Ga)Se<sub>2</sub> Solar Cells via Electrochemical Passivation Treatment

    No full text
    Defect control in Cu­(In,Ga)­Se<sub>2</sub> (CIGS) materials, no matter what the defect type or density, is a significant issue, correlating directly to PV performance. These defects act as recombination centers and can be briefly categorized into interface recombination and Shockley–Read–Hall (SRH) recombination, both of which can lead to reduced PV performance. Here, we introduce an electrochemical passivation treatment for CIGS films that can lower the oxygen concentration at the CIGS surface as observed by X-ray photoelectron spectrometer analysis. Temperature-dependent <i>J–V</i> characteristics of CIGS solar cells reveal that interface recombination is suppressed and an improved rollover condition can be achieved following our electrochemical treatment. As a result, the surface defects are passivated, and the power conversion efficiency performance of the solar cell devices can be enhanced from 4.73 to 7.75%

    Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode

    No full text
    A novel carbon-enclosed chemical vapor deposition (CE-CVD) to grow high quality monolayer graphene on Cu substrate at a low temperature of 500 °C was demonstrated. The quality of the grown graphene was investigated by Raman spectra, and the detailed growth mechanism of high quality graphene by the CE-CVD process was investigated in detail. In addition to growth of high quality monolayer graphene, a transparent hybrid few-layer graphene/CuNi mesh electrode directly synthesized by the CE-CVD process on a conventional glass substrate at the temperature of 500 °C was demonstrated, showing excellent electrical properties (∼5 Ω/□ @ 93.5% transparency) and ready to be used for optical applications without further transfer process. The few-layer graphene/CuNi mesh electrode shows no electrical degradation even after 2 h annealing in pure oxygen at an elevated temperature of ∼300 °C. Furthermore, the few-layer graphene/CuNi mesh electrode delivers an excellent corrosion resistance in highly corrosive solutions such as electroplating process and achieves a good nucleation rate for the deposited film. Findings suggest that the low temperature few-layer graphene/CuNi mesh electrode synthesized by the CE-CVD process is an excellent candidate to replace indium tin oxide (ITO) as transparent conductive material (TCM) in the next generation

    Large-Scale Micro- and Nanopatterns of Cu(In,Ga)Se<sub>2</sub> Thin Film Solar Cells by Mold-Assisted Chemical-Etching Process

    No full text
    A reactive mold-assisted chemical etching (MACE) process through an easy-to-make agarose stamp soaked in bromine methanol etchant to rapidly imprint larger area micro- and nanoarrays on CIGS substrates was demonstrated. Interestingly, by using the agarose stamp during the MACE process with and without additive containing oil and triton, CIGS microdome and microhole arrays can be formed on the CIGS substrate. Detailed formation mechanisms of microstructures and the chemical composition variation after the etching process were investigated. In addition, various microand nanostructures were also demonstrated by this universal approach. The microstructure arrays integrated into standard CIGS solar cells with thinner thickness can still achieve an efficiency of 11.22%, yielding an enhanced efficiency of ∼18% compared with that of their planar counterpart due to an excellent absorption behavior confirmed by the simulation results, which opens up a promising way for the realization of high-efficiency micro- or nanostructured thin-film solar cells. Finally, the complete dissolution of agarose stamp into hot water demonstrates an environmentally friendly method by the mold-assisted chemical etching process through an easy-to-make agarose stamp

    Single CuO<sub><i>x</i></sub> Nanowire Memristor: Forming-Free Resistive Switching Behavior

    No full text
    CuO<sub><i>x</i></sub> nanowires were synthesized by a low-cost and large-scale electrochemical process with AAO membranes at room temperature and its resistive switching has been demonstrated. The switching characteristic exhibits forming-free and low electric-field switching operation due to coexistence of significant amount of defects and Cu nanocrystals in the partially oxidized nanowires. The detailed resistive switching characteristics of CuO<sub><i>x</i></sub> nanowire systems have been investigated and possible switching mechanisms are systematically proposed based on the microstructural and chemical analysis via transmission electron microscopy

    Large Scale and Orientation-Controllable Nanotip Structures on CuInS<sub>2</sub>, Cu(In,Ga)S<sub>2</sub>, CuInSe<sub>2</sub>, and Cu(In,Ga)Se<sub>2</sub> by Low Energy Ion Beam Bombardment Process: Growth and Characterization

    No full text
    One-step facile methodology to create nanotip arrays on chalcopyrite materials (such as CuInS<sub>2</sub>, Cu­(In,Ga)­S<sub>2</sub>, CuInSe<sub>2</sub>, and Cu­(In,Ga)­Se<sub>2</sub>) via a low energy ion beam bombardment process has been demonstrated. The mechanism of formation for nanotip arrays has been proposed by sputtering yields of metals and reduction of metals induced by the ion beam bombardment process. The optical reflectance of these chalcopyrite nanotip arrays has been characterized by UV–vis spectrophotometer and the efficient light-trapping effect has been observed. Large scale (∼4′′) and high density (10<sup>10</sup> tips/cm<sup>2</sup>) of chalcopyrite nanotip arrays have been obtained by using low ion energy (< 1 kV), short processing duration (< 30 min), and template-free. Besides, orientation and length of these chalcopyrite nanotip arrays are controllable. Our results can be the guide for other nanostructured materials fabrication by ion sputtering and are available for industrial production as well
    corecore