33 research outputs found

    Multiwavelength study of quiescent states of MRK 421 with unprecedented hard x-ray coverage provided by<i> NuSTAR</i> in 2013

    Get PDF

    Chronic intra-uterine Ureaplasma parvum infection induces injury of the enteric nervous system in ovine fetuses

    Get PDF
    Background: Chorioamnionitis, inflammation of the fetal membranes during pregnancy, is often caused by intra-amniotic (IA) infection with single or multiple microbes. Chorioamnionitis can be either acute or chronic, and is associated with adverse postnatal outcomes of the intestine, including necrotizing enterocolitis (NEC). Neonates with NEC have structural and functional damage to the intestinal mucosa and the enteric nervous system (ENS), with loss of enteric neurons and glial cells. Yet, the impact of acute, chronic or repetitive antenatal inflammatory stimuli on the development of the intestinal mucosa and ENS has not been studied. The aim of this study is therefore to investigate the effect of acute, chronic and repetitive microbial exposure on the intestinal mucosa, submucosa and ENS in premature lambs. Materials and Methods: A sheep model of pregnancy was used in which the ileal mucosa, submucosa and ENS were assessed following IA exposure to lipopolysaccharide (LPS) for 2 or 7 days (acute), Ureaplasma parvum (UP) for 42 days (chronic) or repetitive microbial exposure (42 days UP with 2 or 7 days LPS). Results: IA LPS exposure for 7 days or IA UP exposure for 42 days caused intestinal injury and inflammation in the mucosal and submucosal layer of the gut. Repetitive microbial exposure did not further aggravate injury of the terminal ileum. Chronic IA UP exposure caused significant structural ENS alterations characterized by loss of PGP9.5 and S100β immunoreactivity whereas these changes were not found after re-exposure of chronic UP-exposed fetuses to LPS for 2 or 7 days. Conclusion: The in utero loss of PGP9.5 and S100β immunoreactivity following chronic UP exposure corresponds with intestinal changes in neonates with NEC, and may therefore form a novel mechanistic explanation for the association of chorioamnionitis and NEC

    MULTIWAVELENGTH STUDY OF QUIESCENT STATES OF MRK 421 WITH UNPRECEDENTED HARD X-RAY COVERAGE PROVIDED BY NuSTAR IN 2013

    Get PDF
    © 2016. The American Astronomical Society. All rights reserved.We present coordinated multiwavelength observations of the bright, nearby BL Lacertae object Mrk 421 taken in 2013 January-March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very high energy (VHE) γ-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3-79 keV range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep Γ ≈ 3 power law, with no evidence for an exponential cutoff or additional hard components up to ∼80 keV. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure that relates to the two bumps of the broadband SED. In each bump, the variability increases with energy, which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi band variability, the significant X-ray-to-VHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in situ electron acceleration and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states

    Activity profiling reveals changes in the diversity and activity of proteins in Arabidopsis roots in response to nematode infection

    No full text
    Cyst nematodes are obligate, sedentary endoparasites with a highly specialised biology and a huge economic impact in agriculture. Successful parasitism involves morphological and physiological modifications of the host cells which lead to the formation of specialised syncytial feeding structures in roots. The development of the syncytium is aided by a cocktail of nematode effectors that manipulate the host plant activities in a complex network of interactions through post-translational modifications. Traditional transcriptomic and proteomic approaches cannot display this functional proteomic information. Activity-based protein profiling (ABPP) is a powerful technology that can be used to investigate the activity of the proteome through activity-based probes. To better understand the functional proteomics of syncytium, ABPP was conducted on syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Our results demonstrated that the activity of several enzymes is differentially regulated in the syncytium compared to the control roots. Among those specifically activated in the syncytium are a putative S-formyl-glutathione hydrolase (SFGH), a putative methylesterase (MES) and two unidentified enzymes. In contrast, the activities of vacuolar processing enzymes (VPEs) are specifically suppressed in the syncytium. Competition labelling, quantitative gene expression and T-DNA knock-out mutants were used to further characterise the roles of the differentially regulated enzymes during plant-nematode interaction. In conclusion, our study will open the door to generate a comprehensive and integrated view of the host-pathogen warfare that results in the formation of long-term feeding sites for pathogens

    Activity profiling reveals changes in the diversity and activity of proteins in Arabidopsis roots in response to nematode infection

    No full text
    Cyst nematodes are obligate, sedentary endoparasites with a highly specialised biology and a huge economic impact in agriculture. Successful parasitism involves morphological and physiological modifications of the host cells which lead to the formation of specialised syncytial feeding structures in roots. The development of the syncytium is aided by a cocktail of nematode effectors that manipulate the host plant activities in a complex network of interactions through post-translational modifications. Traditional transcriptomic and proteomic approaches cannot display this functional proteomic information. Activity-based protein profiling (ABPP) is a powerful technology that can be used to investigate the activity of the proteome through activity-based probes. To better understand the functional proteomics of syncytium, ABPP was conducted on syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Our results demonstrated that the activity of several enzymes is differentially regulated in the syncytium compared to the control roots. Among those specifically activated in the syncytium are a putative S-formyl-glutathione hydrolase (SFGH), a putative methylesterase (MES) and two unidentified enzymes. In contrast, the activities of vacuolar processing enzymes (VPEs) are specifically suppressed in the syncytium. Competition labelling, quantitative gene expression and T-DNA knock-out mutants were used to further characterise the roles of the differentially regulated enzymes during plant nematode interaction. In conclusion, our study will open the door to generate a comprehensive and integrated view of the host-pathogen warfare that results in the formation of long-term feeding sites for pathogens. (C) 2015 Elsevier Masson SAS. All rights reserved

    Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison

    Get PDF
    Predictions of marine ice-sheet behaviour require models able to simulate grounding-line migration. We present results of an intercomparison experiment for plan-view marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no buttressing effects from lateral drag). Perturbation experiments specifying spatial variation in basal sliding parameters permitted the evolution of curved grounding lines, generating buttressing effects. The experiments showed regions of compression and extensional flow across the grounding line, thereby invalidating the boundary layer theory. Steady-state grounding-line positions were found to be dependent on the level of physical model approximation. Resolving grounding lines requires inclusion of membrane stresses, a sufficiently small grid size (>500 m), or subgrid interpolation of the grounding line. The latter still requires nominal grid sizes of >5 km. For larger grid spacings, appropriate parameterizations for ice flux may be imposed at the grounding line, but the short-time transient behaviour is then incorrect and different from models that do not incorporate grounding-line parameterizations. The numerical error associated with predicting grounding-line motion can be reduced significantly below the errors associated with parameter ignorance and uncertainties in future scenarios.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore