67 research outputs found

    Fuzzy Modeling and Parallel Distributed Compensation for Aircraft Flight Control from Simulated Flight Data

    Get PDF
    A method is described that combines fuzzy system identification techniques with Parallel Distributed Compensation (PDC) to develop nonlinear control methods for aircraft using minimal a priori knowledge, as part of NASAs Learn-to-Fly initiative. A fuzzy model was generated with simulated flight data, and consisted of a weighted average of multiple linear time invariant state-space cells having parameters estimated using the equation-error approach and a least-squares estimator. A compensator was designed for each subsystem using Linear Matrix Inequalities (LMI) to guarantee closed-loop stability and performance requirements. This approach is demonstrated using simulated flight data to automatically develop a fuzzy model and design control laws for a simplified longitudinal approximation of the F-16 nonlinear flight dynamics simulation. Results include a comparison of flight data with the estimated fuzzy models and simulations that illustrate the feasibility and utility of the combined fuzzy modeling and control approach

    Global Aerodynamic Modeling Using Automated Local Model Networks in Real Time

    Get PDF
    A novel method is presented for automated real-time global aerodynamic modeling using local model networks, known as Smoothed Partitioning with Localized Trees in Real Time (SPLITR), as part of NASAs Learn-to-Fly technology development initiative. The global nonlinear aerodynamics are partitioned into several local regions known as cells, with the dimension, location, and timing of each partition automatically selected based on a residual characterization procedure, under the constraints of real-time operation. Regression trees represent the successive partitioning of the global flight envelope and describe the evolution of the cell structure. Recursive equation-error least-squares parameter estimation in the time domain is used to estimate a model that represents the local aerodynamics in each region, so that it can be updated independently with non-contiguous data in the range of each cell over time. A weighted superposition of these piecewise local models across the flight envelope forms a global nonlinear model that also accurately captures the local aerodynamics. The SPLITR approach is demonstrated using both simulation and flight data, and the results are analyzed in terms of model predictive capabilities as well as interpretability. The results show that SPLITR can be used to automatically partition complex nonlinear aerodynamic behavior, produce an accurate model, and provide valuable physical insight into the local and global aerodynamics

    Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains

    Investigation of the Thomson scattering-ECE discrepancy in ICRF heated plasmas at Alcator C-Mod

    Get PDF
    This paper reports on new experiments at Alcator C-Mod that were performed in order to investigate the long-standing, unresolved discrepancy between Thomson scattering (TS) and electron cyclotron emission (ECE) measurements of electron temperature in high temperature tokamak plasmas. Ion cyclotron range of frequency (ICRF) heating is used to produce high temperature conditions where the type of TS-ECE discrepancy observed in the past at JET and TFTR should become observable. At Alcator C-Mod, plasmas with Te(0) up to 8 keV are obtained using ion cyclotron resonance heating (ICRH), ICRF mode conversion heating and a combination of the two heating methods in order to explore the hypothesis that the presence of ICRH-generated fast ions may be related to the discrepancy. In all high temperature cases, the TS and ECE measurements of electron temperature agree to within experimental uncertainties. We find no evidence for the type of discrepancy reported at JET and TFTR. These results show that the TS-ECE discrepancy does not depend on high temperatures alone and also that the presence of ICRH-generated fast ions is insufficient to cause the TS-ECE discrepancy.United States. Dept. of Energy (DE-FC02-99ER54512

    Correlation ECE diagnostic in Alcator C-Mod

    Get PDF
    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, T[subscript e], fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local T[subscript e] fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. T[subscript e] fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-mode plasmas, which implies that the same physics related to the reduction of T[subscript e] fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core T[subscript e] fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper

    BCS to Bose Crossover in Anisotropic Superconductors

    Full text link
    In this work we use functional integral techniques to examine the nearest neighbour attractive Hubbard model on a quasi-2D lattice. It is a simple phenomenological model for the high-Tc cuprates that allows both extended (non-local) s- and d-wave singlet superconductivity as well as mixed symmetry states. The Hartree-Gor'kov mean field theory of the model has a finite temperature phase diagram which shows a transition from pure s-wave to pure d-wave superconductivity, via a mixed symmetry s+id state, as a function of doping. Including Gaussian fluctuations we examine the crossover from weak-coupling BCS superconductivity to the strong-coupling Bose-Einstein condensation of composite s- or d-wave bosons and comment on the origin and symmetry of the pseudogap.Comment: 20 pages inc. 13 figure
    corecore