31 research outputs found

    Leptin-Mediated Changes in the Human Metabolome.

    Get PDF
    CONTEXT: While severe obesity due to congenital leptin deficiency is rare, studies in patients before and after treatment with leptin can provide unique insights into the role that leptin plays in metabolic and endocrine function. OBJECTIVE: The aim of this study was to characterize changes in peripheral metabolism in people with congenital leptin deficiency undergoing leptin replacement therapy, and to investigate the extent to which these changes are explained by reduced caloric intake. DESIGN: Ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) was used to measure 661 metabolites in 6 severely obese people with congenital leptin deficiency before, and within 1 month after, treatment with recombinant leptin. Data were analyzed using unsupervised and hypothesis-driven computational approaches and compared with data from a study of acute caloric restriction in healthy volunteers. RESULTS: Leptin replacement was associated with class-wide increased levels of fatty acids and acylcarnitines and decreased phospholipids, consistent with enhanced lipolysis and fatty acid oxidation. Primary and secondary bile acids increased after leptin treatment. Comparable changes were observed after acute caloric restriction. Branched-chain amino acids and steroid metabolites decreased after leptin, but not after acute caloric restriction. Individuals with severe obesity due to leptin deficiency and other genetic obesity syndromes shared a metabolomic signature associated with increased BMI. CONCLUSION: Leptin replacement was associated with changes in lipolysis and substrate utilization that were consistent with negative energy balance. However, leptin's effects on branched-chain amino acids and steroid metabolites were independent of reduced caloric intake and require further exploration

    The metabolic syndrome- associated small G protein ARL15 plays a role in adipocyte differentiation and adiponectin secretion.

    Get PDF
    Common genetic variants at the ARL15 locus are associated with plasma adiponectin, insulin and HDL cholesterol concentrations, obesity, and coronary atherosclerosis. The ARL15 gene encodes a small GTP-binding protein whose function is currently unknown. In this study adipocyte-autonomous roles for ARL15 were investigated using conditional knockdown of Arl15 in murine 3T3-L1 (pre)adipocytes. Arl15 knockdown in differentiated adipocytes impaired adiponectin secretion but not adipsin secretion or insulin action, while in preadipocytes it impaired adipogenesis. In differentiated adipocytes GFP-tagged ARL15 localized predominantly to the Golgi with lower levels detected at the plasma membrane and intracellular vesicles, suggesting involvement in intracellular trafficking. Sequencing of ARL15 in 375 severely insulin resistant patients identified four rare heterozygous variants, including an early nonsense mutation in a proband with femorogluteal lipodystrophy and non classical congenital adrenal hyperplasia, and an essential splice site mutation in a proband with partial lipodystrophy and a history of childhood yolk sac tumour. No nonsense or essential splice site mutations were found in 2,479 controls, while five such variants were found in the ExAC database. These findings provide evidence that ARL15 plays a role in adipocyte differentiation and adiponectin secretion, and raise the possibility that human ARL15 haploinsufficiency predisposes to lipodystrophy

    Truncation of POC1A associated with short stature and extreme insulin resistance.

    Get PDF
    We describe a female proband with primordial dwarfism, skeletal dysplasia, facial dysmorphism, extreme dyslipidaemic insulin resistance and fatty liver associated with a novel homozygous frameshift mutation in POC1A, predicted to affect two of the three protein products of the gene. POC1A encodes a protein associated with centrioles throughout the cell cycle and implicated in both mitotic spindle and primary ciliary function. Three homozygous mutations affecting all isoforms of POC1A have recently been implicated in a similar syndrome of primordial dwarfism, although no detailed metabolic phenotypes were described. Primary cells from the proband we describe exhibited increased centrosome amplification and multipolar spindle formation during mitosis, but showed normal DNA content, arguing against mitotic skipping, cleavage failure or cell fusion. Despite evidence of increased DNA damage in cells with supernumerary centrosomes, no aneuploidy was detected. Extensive centrosome clustering both at mitotic spindles and in primary cilia mitigated the consequences of centrosome amplification, and primary ciliary formation was normal. Although further metabolic studies of patients with POC1A mutations are warranted, we suggest that POC1A may be added to ALMS1 and PCNT as examples of centrosomal or pericentriolar proteins whose dysfunction leads to extreme dyslipidaemic insulin resistance. Further investigation of links between these molecular defects and adipose tissue dysfunction is likely to yield insights into mechanisms of adipose tissue maintenance and regeneration that are critical to metabolic health.This work was supported by the Wellcome Trust [grant numbers WT098498, WT098051,WT095515, and WT091310]; the Medical Research Council [MRC_MC_UU_12012/5]; the United Kingdom National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre.This is the final version of the article. It first appeared from Bioscientifica via http://dx.doi.org/10.1530/JME-15-009

    Glucagonoma-associated dilated cardiomyopathy refractory to somatostatin analogue therapy.

    No full text
    A 67-year-old woman presented with a generalised rash associated with weight loss and resting tachycardia. She had a recent diagnosis of diabetes mellitus. Biochemical evaluation revealed elevated levels of circulating glucagon and chromogranin B. Cross-sectional imaging demonstrated a pancreatic lesion and liver metastases, which were octreotide-avid. Biopsy of the liver lesion confirmed a diagnosis of well-differentiated grade 2 pancreatic neuroendocrine tumour, consistent with metastatic glucagonoma. Serial echocardiography commenced 4 years before this diagnosis demonstrated a progressive left ventricular dilatation and dysfunction in the absence of ischaemia, suggestive of glucagonoma-associated dilated cardiomyopathy. Given the severity of the cardiac impairment, surgical management was considered inappropriate and somatostatin analogue therapy was initiated, affecting clinical and biochemical improvement. Serial cross-sectional imaging demonstrated stable disease 2 years after diagnosis. Left ventricular dysfunction persisted, however, despite somatostatin analogue therapy and optimal medical management of cardiac failure. In contrast to previous reports, the case we describe demonstrates that chronic hyperglucagonaemia may lead to irreversible left ventricular compromise. Management of glucagonoma therefore requires careful and serial evaluation of cardiac status. Learning points: In rare cases, glucagonoma may present with cardiac failure as the dominant feature. Significant cardiac impairment may occur in the absence of other features of glucagonoma syndrome due to subclinical chronic hyperglucagonaemia. A diagnosis of glucagonoma should be considered in patients with non-ischaemic cardiomyopathy, particularly those with other features of glucagonoma syndrome. Cardiac impairment due to glucagonoma may not respond to somatostatin analogue therapy, even in the context of biochemical improvement. All patients with a new diagnosis of glucagonoma should be assessed clinically for evidence of cardiac failure and, if present, a baseline transthoracic echocardiogram should be performed. In the presence of cardiac impairment these patients should be managed by an experienced cardiologist

    Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure.

    Get PDF
    OBJECTIVE: Insulin signalling via phosphoinositide 3-kinase (PI3K) requires PIK3R1-encoded regulatory subunits. C-terminal PIK3R1 mutations cause SHORT syndrome, as well as lipodystrophy and insulin resistance (IR), surprisingly without fatty liver or metabolic dyslipidaemia. We sought to investigate this discordance. METHODS: The human pathogenic Pik3r1 Y657∗ mutation was knocked into mice by homologous recombination. Growth, body composition, bioenergetic and metabolic profiles were investigated on chow and high-fat diet (HFD). We examined adipose and liver histology, and assessed liver responses to fasting and refeeding transcriptomically. RESULTS: Like humans with SHORT syndrome, Pik3r1WT/Y657∗ mice were small with severe IR, and adipose expansion on HFD was markedly reduced. Also as in humans, plasma lipid concentrations were low, and insulin-stimulated hepatic lipogenesis was not increased despite hyperinsulinemia. At odds with lipodystrophy, however, no adipocyte hypertrophy nor adipose inflammation was found. Liver lipogenic gene expression was not significantly altered, and unbiased transcriptomics showed only minor changes, including evidence of reduced endoplasmic reticulum stress in the fed state and diminished Rictor-dependent transcription on fasting. Increased energy expenditure, which was not explained by hyperglycaemia nor intestinal malabsorption, provided an alternative explanation for the uncoupling of IR from dyslipidaemia. CONCLUSIONS: Pik3r1 dysfunction in mice phenocopies the IR and reduced adiposity without lipotoxicity of human SHORT syndrome. Decreased adiposity may not reflect bona fide lipodystrophy, but rather, increased energy expenditure, and we suggest that further study of brown adipose tissue in both humans and mice is warranted

    Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations.

    Get PDF
    Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome.IHD was supported by the Raymond and Beverly Sackler Foundation via the University of Cambridge MB/PhD programme; RKS, IB, DBS, and SO were supported by the Wellcome Trust (grants WT098498, WT098051, WT107064, and WT095515, respectively and Strategic Award 100574/Z/12/Z), the MRC Metabolic Diseases Unit (MRC_MC_UU_12012/5), and the United Kingdom National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. The work was also supported by the Innovative Medicines Initiative Joint Undertaking under European Medical Information Framework (EMIF) grant agreement number 115372. UK10K was funded by the Wellcome Trust under award WT091310.This is the final version of the article. It first appeared from the American Society for Clinical Investigation via https://doi.org/10.1172/jci.insight.8876

    Unravelling the pathogenesis of fatty liver disease: patatin-like phospholipase domain-containing 3 protein

    No full text
    Purpose of review Hepatic steatosis is a leading cause of adult and paediatric liver disease and is inextricably linked to obesity, insulin resistance and cardiovascular disease. Here we summarize our current understanding of the role of the patatin-like phospholipase domain-containing 3 gene (PNPLA3) in hepatic steatosis. Recent findings Multiple studies have revealed an association between the common I148M variant in PNPLA3 and increased hepatic fat. In the presence of obesity and chronic alcohol intake, the variant is associated with even more striking phenotypes such as hepatitis and cirrhosis, respectively. These findings suggest that genetic variants in PNPLA3 predispose towards hepatic steatosis and, in the context of other environmental stressors, its progression to irreversible liver failure. PNPLA3 is predominantly expressed in human liver and adipose tissue, possesses both lipolytic and lipogenic activity in vitro and localizes to the surface of lipid droplets in heptocytes. The 148M mutant protein has reduced lipolytic activity, with attendant increased cellular triglyceride accumulation. However, the precise physiological role of PNPLA3 remains mysterious. Summary Recent studies have implicated PNPLA3 in the pathogenesis of hepatic steatosis. Attempts to describe its function in vivo may provide us with both an opportunity to understand and a strategy to overcome this leading cause of human morbidity

    Glucagonoma-associated dilated cardiomyopathy refractory to somatostatin analogue therapy

    No full text
    A 67-year-old woman presented with a generalised rash associated with weight loss and resting tachycardia. She had a recent diagnosis of diabetes mellitus. Biochemical evaluation revealed elevated levels of circulating glucagon and chromogranin B. Cross-sectional imaging demonstrated a pancreatic lesion and liver metastases, which were octreotide-avid. Biopsy of the liver lesion confirmed a diagnosis of well-differentiated grade 2 pancreatic neuroendocrine tumour, consistent with metastatic glucagonoma. Serial echocardiography commenced 4 years before this diagnosis demonstrated a progressive left ventricular dilatation and dysfunction in the absence of ischaemia, suggestive of glucagonoma-associated dilated cardiomyopathy. Given the severity of the cardiac impairment, surgical management was considered inappropriate and somatostatin analogue therapy was initiated, affecting clinical and biochemical improvement. Serial cross-sectional imaging demonstrated stable disease 2 years after diagnosis. Left ventricular dysfunction persisted, however, despite somatostatin analogue therapy and optimal medical management of cardiac failure. In contrast to previous reports, the case we describe demonstrates that chronic hyperglucagonaemia may lead to irreversible left ventricular compromise. Management of glucagonoma therefore requires careful and serial evaluation of cardiac status
    corecore