77 research outputs found
Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification
The HIV-1 Vif protein counteracts the antiviral activity exhibited by the host cytidine deaminases APOBEC3G and APOBEC3F. Here, we show that defective vif alleles can readily be found in HIV-1 isolates and infected patients. Single residue changes in the Vif protein sequence are sufficient to cause the loss of Vif-induced APOBEC3 neutralization. Interestingly, not all the detected defects lead to a complete inactivation of Vif function since some mutants retained selective neutralizing activity against APOBEC3F but not APOBEC3G or vice versa. Concordantly, independently hypermutated proviruses with distinguishable patterns of G-to-A substitution attributable to cytidine deamination induced by APOBEC3G, APOBEC3F, or both enzymes were present in individuals carrying proviruses with completely or partly defective Vif variants. Natural variation in Vif function may result in selective and partial neutralization of cytidine deaminases and thereby promote viral sequence diversification within HIV-1 infected individuals
Intensified and protective CD4+ T cell immunity in mice with anti–dendritic cell HIV gag fusion antibody vaccine
Current human immunodeficiency virus (HIV) vaccine approaches emphasize prime boost strategies comprising multiple doses of DNA vaccine and recombinant viral vectors. We are developing a protein-based approach that directly harnesses principles for generating T cell immunity. Vaccine is delivered to maturing dendritic cells in lymphoid tissue by engineering protein antigen into an antibody to DEC-205, a receptor for antigen presentation. Here we characterize the CD4+ T cell immune response to HIV gag and compare efficacy with other vaccine strategies in a single dose. DEC-205–targeted HIV gag p24 or p41 induces stronger CD4+ T cell immunity relative to high doses of gag protein, HIV gag plasmid DNA, or recombinant adenovirus-gag. High frequencies of interferon (IFN)-γ– and interleukin 2–producing CD4+ T cells are elicited, including double cytokine-producing cells. In addition, the response is broad because the primed mice respond to an array of peptides in different major histocompatibility complex haplotypes. Long-lived T cell memory is observed. After subcutaneous vaccination, CD4+ and IFN-γ–dependent protection develops to a challenge with recombinant vaccinia-gag virus at a mucosal surface, the airway. We suggest that a DEC-targeted vaccine, in part because of an unusually strong and protective CD4+ T cell response, will improve vaccine efficacy as a stand-alone approach or with other modalities
A Recoding Method to Improve the Humoral Immune Response to an HIV DNA Vaccine
This manuscript describes a novel strategy to improve HIV DNA vaccine design. Employing a new information theory based bioinformatic algorithm, we identify a set of nucleotide motifs which are common in the coding region of HIV, but are under-represented in genes that are highly expressed in the human genome. We hypothesize that these motifs contribute to the poor protein expression of gag, pol, and env genes from the c-DNAs of HIV clinical isolates. Using this approach and beginning with a codon optimized consensus gag gene, we recode the nucleotide sequence so as to remove these motifs without modifying the amino acid sequence. Transfecting the recoded DNA sequence into a human kidney cell line results in doubling the gag protein expression level compared to the codon optimized version. We then turn both sequences into DNA vaccines and compare induced antibody response in a murine model. Our sequence, which has the motifs removed, induces a five-fold increase in gag antibody response compared to the codon optimized vaccine
Antibody Evasion by SARS-CoV-2 Omicron Subvariants BA2121, BA4 and BA5
SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies
Quantifying the Impact of Immune History and Variant on SARS-CoV-2 Viral Kinetics and Infection Rebound: A Retrospective Cohort Study
BACKGROUND: The combined impact of immunity and SARS-CoV-2 variants on viral kinetics during infections has been unclear.
METHODS: We characterized 1,280 infections from the National Basketball Association occupational health cohort identified between June 2020 and January 2022 using serial RT-qPCR testing. Logistic regression and semi-mechanistic viral RNA kinetics models were used to quantify the effect of age, variant, symptom status, infection history, vaccination status and antibody titer to the founder SARS-CoV-2 strain on the duration of potential infectiousness and overall viral kinetics. The frequency of viral rebounds was quantified under multiple cycle threshold (Ct) value-based definitions.
RESULTS: Among individuals detected partway through their infection, 51.0% (95% credible interval [CrI]: 48.3-53.6%) remained potentially infectious (Ct
CONCLUSIONS: SARS-CoV-2 viral kinetics are partly determined by immunity and variant but dominated by individual-level variation. Since booster vaccination protects against infection, longer clearance times for BA.1-infected, boosted individuals may reflect a less effective immune response, more common in older individuals, that increases infection risk and reduces viral RNA clearance rate. The shifting landscape of viral kinetics underscores the need for continued monitoring to optimize isolation policies and to contextualize the health impacts of therapeutics and vaccines.
FUNDING: Supported in part by CDC contract #200-2016-91779, a sponsored research agreement to Yale University from the National Basketball Association contract #21-003529, and the National Basketball Players Association
Phase 1 Safety and Immunogenicity Evaluation of ADMVA, a Multigenic, Modified Vaccinia Ankara-HIV-1 B'/C Candidate Vaccine
in a modified vaccinia Ankara viral vector. Sequences were derived from a prevalent circulating HIV-1 recombinant form in Yunnan, China, an area of high HIV incidence. The objective was to evaluate the safety and immunogenicity of ADMVA in human volunteers.. Two volunteers mounted antibodies that were able to neutralize clade-matched viruses.ADMVA was well-tolerated and elicited durable humoral and cellular immune responses
SARS-CoV-2 infection causes dopaminergic neuron senescence
COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDA-approved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.</p
SARS-CoV-2 infection causes dopaminergic neuron senescence
COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDA-approved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.</p
Phase 1 Safety and Immunogenicity Evaluation of ADVAX, a Multigenic, DNA-Based Clade C/B' HIV-1 Candidate Vaccine
BACKGROUND: We conducted a Phase I dose escalation trial of ADVAX, a DNA-based candidate HIV-1 vaccine expressing Clade C/B' env, gag, pol, nef, and tat genes. Sequences were derived from a prevalent circulating recombinant form in Yunnan, China, an area of high HIV-1 incidence. The objective was to evaluate the safety and immunogenicity of ADVAX in human volunteers. METHODOLOGY/PRINCIPAL FINDINGS: ADVAX or placebo was administered intramuscularly at months 0, 1 and 3 to 45 healthy volunteers not at high risk for HIV-1. Three dosage levels [0.2 mg (low), 1.0 mg (mid), and 4.0 mg (high)] were tested. Twelve volunteers in each dosage group were assigned to receive ADVAX and three to receive placebo in a double-blind design. Subjects were followed for local and systemic reactogenicity, adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA. Cellular immunogenicity was assessed by a validated IFNgamma ELISpot assay and intracellular cytokine staining. ADVAX was safe and well-tolerated, with no vaccine-related serious adverse events. Local and systemic reactogenicity events were reported by 64% and 42% of vaccine recipients, respectively. The majority of events were mild. The IFNgamma ELISpot response rates to any HIV antigen were 0/9 (0%) in the placebo group, 3/12 (25%) in the low-dosage group, 4/12 (33%) in the mid-dosage group, and 2/12 (17%) in the high-dosage group. Overall, responses were generally transient and occurred to each gene product, although volunteers responded to single antigens only. Binding antibodies to gp120 were not detected in any volunteers, and HIV seroconversion did not occur. CONCLUSIONS/SIGNIFICANCE: ADVAX delivered intramuscularly is safe, well-tolerated, and elicits modest but transient cellular immune responses. TRIAL REGISTRATION: Clinicaltrials.gov NCT00249106.published_or_final_versio
SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease.
We studied plasma antibody responses of 35 patients about 1 month after SARS-CoV-2 infection. Titers of antibodies binding to the viral nucleocapsid and spike proteins were significantly higher in patients with severe disease. Likewise, mean antibody neutralization titers against SARS-CoV-2 pseudovirus and live virus were higher in the sicker patients, by ∼5-fold and ∼7-fold, respectively. These findings have important implications for those pursuing plasma therapy, isolation of neutralizing monoclonal antibodies, and determinants of immunity
- …