505 research outputs found

    Feasibility study on the application of carbon dioxide phase change fracturing technology in a foundation pit of an open cut tunnel

    Get PDF
    Carbon dioxide phase change fracturing technology is a brand-new and efficient cracking and tunneling technology. Because the method utilizes the change of carbon dioxide state, it belongs to a pure physical process. By adjusting the release rate of gaseous substances, it can effectively control the pressure of the gas, and achieve micro vibration, zero flying stone, zero toxic gas emission, and no micro harmful effect of shock wave, but the application of carbon dioxide phase change cracking technology in urban foundation pit excavation is less. In this paper, through the analysis of three different cracking parameters of urban foundation pit excavation process, it is found that when the diameter of the cracked pipe is 85 mm, the construction safety can be guaranteed. In addition, according to the on-site cracking effect, the carbon dioxide phase change cracking technology is a safe, reliable, relatively economical and efficient excavation technology under urban complex environmental conditions, and will not affect the surrounding environment during use, but Its cracking efficiency has a great relationship with the air surface

    Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics

    Get PDF
    A long-standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half-space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small-scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high-resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ∼300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super-swell excluded can be fit well with a HSC model till ∼80–85 Ma and a plate model for older seafloor, particularly, with the HSC-Plate depth-age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth-age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts' HSC-Plate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super-swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super-swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly lithospheric reheating associated with “trapped” heat below old lithosphere (Huang and Zhong, 2005), play an essential role in causing the deviations in topography from the HSC model prediction

    Micro Fourier Transform Profilometry (μ\muFTP): 3D shape measurement at 10,000 frames per second

    Full text link
    Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μ\muFTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, μ\muFTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show μ\muFTP's broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.Comment: This manuscript was originally submitted on 30th January 1

    A new steering approach for VSCMGs with high precision

    Get PDF
    AbstractA new variable speed control moment gyro (VSCMG) steering law is proposed in order to achieve higher torque precision. The dynamics of VSCMGs is established, and two work modes are then designed according to command torque: control momentum gyro (CMG)/reaction wheel (RW) hybrid mode for the large torque case and RW single mode for the small. When working in the CMG/RW hybrid mode, the steering law deals with the gimbal dead-zone nonlinearity through compensation by RW sub-mode. This is in contrast to the conventional CMG singularity avoidance and wheel speed equalization, as well as the proof of definitely hyperbolic singular property of the CMG sub-mode. When working in the RW single mode, the motion of gimbals will be locked. Both the transition from CMG/RW hybrid mode to RW single mode and the reverse are studied. During the transition, wheel speed equalization and singularity avoidance of both the CMG and RW sub-modes are considered. A steering law for the RWs with locked gimbals is presented. It is shown by simulations that the VSCMGs with this new steering law could reach a better torque precision than the normal CMGs in the case of both large and small torques

    The Dichotomy Property in Stabilizability of 2×22\times2 Linear Hyperbolic Systems

    Full text link
    This paper is devoted to discuss the stabilizability of a class of 2×2 2 \times2 non-homogeneous hyperbolic systems. Motivated by the example in \cite[Page 197]{CB2016}, we analyze the influence of the interval length LL on stabilizability of the system. By spectral analysis, we prove that either the system is stabilizable for all L>0L>0 or it possesses the dichotomy property: there exists a critical length Lc>0L_c>0 such that the system is stabilizable for L(0,Lc)L\in (0,L_c) but unstabilizable for L[Lc,+)L\in [L_c,+\infty). In addition, for L[Lc,+)L\in [L_c,+\infty), we obtain that the system can reach equilibrium state in finite time by backstepping control combined with observer. Finally, we also provide some numerical simulations to confirm our developed analytical criteria

    Dark-state sideband cooling in an atomic ensemble

    Full text link
    We utilize the dark state in a {\Lambda}-type three-level system to cool an ensemble of 85Rb atoms in an optical lattice [Morigi et al., Phys. Rev. Lett. 85, 4458 (2000)]. The common suppression of the carrier transition of atoms with different vibrational frequencies allows them to reach a subrecoil temperature of 100 nK after being released from the optical lattice. A nearly zero vibrational quantum number is determined from the time-of-flight measurements and adiabatic expansion process. The features of sideband cooling are examined in various parameter spaces. Our results show that dark-state sideband cooling is a simple and compelling method for preparing a large ensemble of atoms into their vibrational ground state of a harmonic potential and can be generalized to different species of atoms and molecules for studying ultracold physics that demands recoil temperature and below

    Temporal phase unwrapping using deep learning

    Full text link
    The multi-frequency temporal phase unwrapping (MF-TPU) method, as a classical phase unwrapping algorithm for fringe projection profilometry (FPP), is capable of eliminating the phase ambiguities even in the presence of surface discontinuities or spatially isolated objects. For the simplest and most efficient case, two sets of 3-step phase-shifting fringe patterns are used: the high-frequency one is for 3D measurement and the unit-frequency one is for unwrapping the phase obtained from the high-frequency pattern set. The final measurement precision or sensitivity is determined by the number of fringes used within the high-frequency pattern, under the precondition that the phase can be successfully unwrapped without triggering the fringe order error. Consequently, in order to guarantee a reasonable unwrapping success rate, the fringe number (or period number) of the high-frequency fringe patterns is generally restricted to about 16, resulting in limited measurement accuracy. On the other hand, using additional intermediate sets of fringe patterns can unwrap the phase with higher frequency, but at the expense of a prolonged pattern sequence. Inspired by recent successes of deep learning techniques for computer vision and computational imaging, in this work, we report that the deep neural networks can learn to perform TPU after appropriate training, as called deep-learning based temporal phase unwrapping (DL-TPU), which can substantially improve the unwrapping reliability compared with MF-TPU even in the presence of different types of error sources, e.g., intensity noise, low fringe modulation, and projector nonlinearity. We further experimentally demonstrate for the first time, to our knowledge, that the high-frequency phase obtained from 64-period 3-step phase-shifting fringe patterns can be directly and reliably unwrapped from one unit-frequency phase using DL-TPU

    Game equilibrium based control analysis on the sustainable market structure of rare metal mineral resources – evidence from China

    Get PDF
    In rare metal mineral market, as a complex system, multiple decision-making among the stakeholders increases the complexity in its market structure and dynamic process. The unreasonable compensation pricing mechanism for the development of the rare metal mineral resources in China requires to be studied. Drawing on the methods of game theory model and chaos control analysis, this paper builds theoretical model of rare metal mineral market structure, corporating related parameters of rare metal in the game theory model, to conduct the chaotic nature and path analysis, expecting to solve the bottleneck problems that restrict the rare metal pricing and resource security and enhance the waste valorization for the sustainability. Specificly, a Cournot-Nash Equilibrium model is built to analyze the Cournot-equilibrium point, the stability of the Cournot Equilibrium point, the chaotic status, as well as the pattern to chaos of the game system in the rare metal mineral resource market, numerical simulation is used to verify the model. The conclusions facilitate the formulation of industrial economic policies and further improvement of managerial strategies to solve market problems
    corecore