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Abstract A new variable speed control moment gyro (VSCMG) steering law is proposed in order

to achieve higher torque precision. The dynamics of VSCMGs is established, and two work modes

are then designed according to command torque: control momentum gyro (CMG)/reaction wheel

(RW) hybrid mode for the large torque case and RW single mode for the small. When working in

the CMG/RW hybrid mode, the steering law deals with the gimbal dead-zone nonlinearity through

compensation by RW sub-mode. This is in contrast to the conventional CMG singularity avoidance

and wheel speed equalization, as well as the proof of definitely hyperbolic singular property of the

CMG sub-mode. When working in the RW single mode, the motion of gimbals will be locked. Both

the transition from CMG/RW hybrid mode to RW single mode and the reverse are studied. During

the transition, wheel speed equalization and singularity avoidance of both the CMG and RW sub-

modes are considered. A steering law for the RWs with locked gimbals is presented. It is shown by

simulations that the VSCMGs with this new steering law could reach a better torque precision than

the normal CMGs in the case of both large and small torques.
� 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Control momentum gyros (CMGs) have been used as space-

craft attitude control actuators for many years.1–3 Due to their
torque amplification feature, single-gimbal constant speed
CMGs (CSCMGs) are especially advantageous for actuating
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large spacecraft and space structures,4 or agile satellites that
need rapid maneuverability.5,6 Extensive testing results have
been obtained for attitude control with CSCMGs (usually

referred to as CMGs when there is no risk of confusion). Some
of these focus on the subject of CMG configuration design,
such as roof type,7 and pyramid8 or five pyramid type sys-

tems.4,9 Margulies and Aubrun10 and Bedrossian et al.11 ana-
lyzed the corresponding singularities, and divided them into
two types for which null motion12 and robust pseudo-inverse

method13,14 are adopted to avoid/escape. In addition, Mont-
fort and Dulot15 investigated the reconfiguration of a CMG
system in case of failures. Although CMGs can provide larger
torque than reaction wheels (RWs), they also introduce larger

torque error. To reduce this torque error, several approaches
.1016/j.
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Fig. 2 Structure of a VSCMG.
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have been proposed including to model the system as precisely
as possible16,17 or to utilize certain variation isolation meth-
ods.18 A third is to employ mixed actuators for spacecraft atti-

tude control.19,20 The first two approaches, however,
essentially cannot decrease torque error, and the third, despite
of its ability to produce more precise torque, requires more

than one set of actuators.
In 1997, Ford and Hall first introduced the concept of a

variable speed control moment gyro (VSCMG) when it was

called a ‘‘gimbaled momentum wheel.”21 The term VSCMG
was coined in Ref. 22 Whereas the wheel speed of a conven-
tional CMG is kept constant, the wheel speed of a VSCMG
is allowed to vary continuously. Consequently, a VSCMG

can be considered as an integration of a RW and a conven-
tional CMG. The extra degrees of freedom, owing to wheel
speed variance, can be used to avoid the singularities of its

CMG sub-mode,23,24 or store kinetic energy in an integrated
power/attitude control system (IPACS).25,26 When considering
the lifespan and reliability of the actuators, wheel speed equal-

ization is an extra issue for VSCMGs, and useful algorithms
toward this objective have been developed.27–29 However, the
problem of reducing the torque error of VSCMGs by utilizing

extra degrees of freedom has barely been explored.
In this paper, a new steering law is proposed for one set of

VSCMGs that can provide high-precision torque outputs for
both large and small command torque inputs by fully utilizing

the two work modes of a VSCMG. The operation mechanism
of the steering law is shown in Fig. 1. The remainder of this
paper is organized as follows: Section 2 models the dynamics

and divides the work modes of the VSCMGs. The steering
law for CMG/RW hybrid mode and RW single mode are then
designed in Sections 3 and 4. Section 5 presents numerical

examples to verify the effectiveness of the proposed steering
logic, and the paper closes with concluding remarks.

2. Dynamics and work modes of VSCMGs

A VSCMG is composed of a spin wheel and a gimbal that sup-
ports it, as shown in Fig. 2. The gimbal rotates about the gim-

bal axis, whose unit vector is denoted as g, and the wheel
rotates about the spin axis, whose unit vector is denoted as
s. g is perpendicular to s. The angular velocities of the gimbal

and the wheel are denoted as _d and X, respectively, where d is
the gimbal angle of the VSCMG, and together they produce an
angular momentum h. The gimbal movement changes the

direction of angular momentum, and thus generates torque
by CMG sub-mode in the opposite direction of the unit vector
t, which is given as g� s; variation of the wheel speed produces
Fig. 1 A design flow chart of the high-

Please cite this article in press as: Huang X et al. A new steering approach for VSC
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torque by RW sub-mode in the direction of s. Generally speak-
ing, the torque of CMG sub-mode is far greater than that of

RW, and the total output torque of the VSCMG is mainly
from the CMG sub-mode. Therefore, the total torque of the
VSCMG deviates slightly from the opposite direction of t.

A cluster of VSCMGs is usually composed of n (n P 3)
non-coplanar VSCMGs for three-axis attitude control of a
spacecraft, and each VSCMG in the cluster usually holds the

same mass and inertia parameters as another. Note that the
pyramid and five pyramid configurations all belong to the
non-coplanar type. In general, it is reasonable to consider only

the axial angular momentum of the wheels.22,24 Therefore, the
total angular momentum of the VSCMGs can be expressed in
the spacecraft body frame as

hc ¼
Xn

i¼1

hi ¼
Xn

i¼1

IXisi ¼ AsIX ð1Þ

where hi and Xi represent the axial angular momentum and the
spin rate of the wheel of the ith VSCMG; I is the axial moment

of inertia of each wheel in the cluster; si is the unit column vec-
tor for the ith VSCMG along the direction of the spin axis;

As ¼ ½s1; s2; . . . ; sn�; and X ¼ ½X1;X2; . . . ;Xn�T.
According to theorem of angular momentum, the output

torque of the VSCMGs can be given by the time derivative

of hc, that is

Tc ¼ � _hc ¼ �AtI½X�d _d� AsI _X

¼ Cðd;XÞ _dþDðdÞ _X
Cðd;XÞ ¼ �AtI½X�d
DðdÞ ¼ �AsI

8>>>><
>>>>:

ð2Þ
precision steering law for VSCMGs.
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where At ¼ ½t1; t2; . . . ; tn� in which ti is the unit column vector

for the ith VSCMG along the direction of the transverse axis;

d ¼ ½d1; d2; . . . ; dn�T, with di the gimbal angle of the ith
VSCMG; and [�]d is an operator that brings an arbitrary col-

umn vector z ¼ ½z1; z2; . . . ; zn�T to a diagonal matrix defined as

½z�d ¼ diagðz1; z2; . . . ; znÞ ð3Þ
From Eq. (2) it can be seen that the output torque of the

VSCMGs can be divided into two parts. The first part,

Cðd;XÞ _d, caused by the change of the direction of hc, is called

the CMG sub-mode. The second part, DðdÞ _X, caused by the

variation in magnitude of hc, is called the RW sub-mode.
To calculate As and At in Eq. (2), we make the following

deduction. The vectors si and ti in As and At can be computed

as

si ¼ cos disi0 þ sin diti0 ð4Þ

ti ¼ cos diti0 � sin disi0 ð5Þ
where si0 and ti0 are the initial values of si and ti, respectively.
Taking the time derivative of Eqs. (4) and (5) yields

_si ¼ _diti; _ti ¼ � _disi ð6Þ
Consequently, As and At, which are functions of gimbal

angles, can be written as

As ¼ As0½cos d�d þ At0½sin d�d ð7Þ

At ¼ At0½cos d�d � As0½sin d�d ð8Þ
where As0 and At0 are the initial values of As and Av, respec-

tively; and sin d ¼ ½sin d1; sin d2; . . . ; sin dn�T,
cos d ¼ ½cos d1; cos d2; . . . ; cos dn�T.

Denoting R ¼ ½C;D� and x ¼ _d
_X

� �
, Eq. (2) can also be

written in the more compact form of

Tc ¼ Rx ð9Þ
The steering law for the VSCMGs is developed based on
Eq. (9). The work mode of VSCMGs is first divided into two
sub modes according to the magnitude of the command tor-

que. One is the CMG/RW hybrid mode, which generates rela-
tively large torque with motions of gimbals and wheels, and
the other is the RW single mode, which generates high-

precision small torque with the gimbals locked and only the
wheels in motion. In the CMG/RW hybrid mode, torque error
can increase due to the torque amplification feature of CMG
sub-mode. In contrast, gimbals are locked in the RW single

mode, and the torque error amplification effect vanishes, yield-
ing higher output torque accuracy than the CMG/RW hybrid
mode. The VSCMG system in RW single mode is essentially

similar to a set of reaction wheels.
Considering the operating conditions of a spacecraft, it is

suggested that a work mode switching strategy be applied

based on the spacecraft flight mode, which can be obtained
from control systems in orbit. In order to accommodate differ-
ent application scenarios and maintain significant perfor-
mance, a switching strategy for the two work modes is

designed as follows: When performing an attitude maneuver,
the VSCMG system is placed in the CMG/RW hybrid mode;
once the maneuver is finished and the attitude is expected to
Please cite this article in press as: Huang X et al. A new steering approach for VSC
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be stable in the subsequent period, a ‘‘lock gimbals” command
is relayed to the VSCMGs, and then a transient process of
locking all the gimbals from CMG/RW hybrid mode to RW

single mode is applied. When the gimbals are locked com-
pletely, the VSCMGs switch to the RW single mode. When a
new attitude maneuver is required again, an ‘‘unlock gimbals”

command will be sent to the VSCMGs, and, similarly, the
VSCMGs will switch into a transient process of unlocking
all the gimbals from RW single mode to the CMG/RW hybrid

mode. Once the transition is completed, the VSCMGs work
under CMG/RW hybrid mode and can provide the large tor-
que required in fast attitude maneuvers.

In the next two sections, steering laws of CMG/RW hybrid

mode and RW single mode are designed. The transient process
of locking the gimbals from CMG/RW hybrid mode to the
RW single mode and the reverse unlocking process are consid-

ered part of the RW single mode.

3. Steering law of CMG/RW hybrid mode

When large torque is needed, such as during attitude maneu-
vers, the VSCMG system is expected to work under the
CMG/RW hybrid mode. For design of the hybrid mode steer-

ing law, firstly, a weighted pseudo-inverse solution xT and a
null space solution xN of Eq. (9) are derived. The dead-zone
nonlinearity of gimbal angular velocity is then compensated

by the RW sub-mode, which can reduce torque error.

3.1. A weighted pseudo-inverse solution based on the singularity
measurement for torque distribution

Because of the torque amplification function of the CMG sub-
mode, the desired torque is expected to be supplied mainly by
the CMG sub-mode when the gimbal configuration is far away

from singular states. When the gimbal configuration is near
singular states, the RW sub-mode is expected to provide more
torque within its capability. According to this idea, a weighted

pseudo-inverse solution for torque distribution based on the
singularity measurement of Eq. (9) is achieved as22,24

xT ¼
_dT
_XT

" #
¼ Rþ

wTc ð10Þ

where Rþ
w ¼ WRTðRWRTÞ�1

is a weighted pseudo-inverse of

R; the weight matrix W takes the form of W ¼ diag
ðWg1;Wg2; . . . ;Wgn;Ws1;Ws2; . . . ;WsnÞ, where Wgj ¼ 1, Wsj ¼
W0

sje
�e j1 for j ¼ 1; 2; . . . ; n, in which j1 ¼ detðAvA

T
t Þ is the sin-

gularity measurement of the gimbal, and W0
sj and e are respec-

tive positive parameters that can be adjusted. The ratio
between Wgj and Wsj reflects that between the torques supplied

by CMG and RW sub-modes. That is, when the gimbal config-
uration is far away from singular states, j1 has a larger value,

and Wsj is relatively small, yielding a relatively small torque by

the RW sub-mode. Otherwise, a smaller j1 leads to a larger

Wsj, and then larger torque will be contributed to the RW

sub-mode.
From the weighted pseudo-inverse solution above, the

gimbal angle velocities are

_d ¼ W1C
TðCW1C

T þDW2D
TÞ�1

Tc ð11Þ
MGs with high precision, Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.
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where W1 ¼ diagðWg1;Wg2; . . . ;WgnÞ and

W2 ¼ diagðWs1;Ws2; . . . ;WsnÞ are weight sub-matrices of W.
Eq. (11) holds a similar mathematical form as the singularity

robust steering law proposed by Wie13:

_xc ¼ WcA
T
c ðAcWcA

T þ VcÞ�1
sc ð12Þ

where xc, Wc, Ac, Vc and sc represent gimbal angle, weight
matrix, CMG torque matrix, supplementary robust term and
desired torque, respectively. Comparing Eq. (11) with

Eq. (12) we can see that the term DW2D
T in Eq. (11) plays a

similar role as the term Vc in Eq. (12), which implies that the

weighted pseudo-inverse solution Eq. (10) has the capability
of escaping from CMG singularities automatically to some
extent. It is also noticeable that the steering law Eq. (12) was
designed for CSCMGs, and it cannot be free from torque

error; however, the weighted pseudo-inverse solution
Eq. (10) does not produce any torque error with the aid of
the extra RW sub-mode.

3.2. A null space solution for CMG singularity avoidance/escape

and wheel speed equalization

It is well known that a cluster of VSCMGs with a non-
coplanar configuration is theoretically always nonsingular;
however, in practice the output torque is mainly presented
by the CMG sub-mode, which is probably singular, and it is

called the CMG singularity of the VSCMGs. Therefore, avoid-
ance of the CMG singularity is of great significance. In addi-
tion, wheel speed equalization is also an important issue.

Since the wheel speeds of the VSCMGs vary with time, the
wheels may work at significantly different speeds for long peri-
ods, and this is harmful to the reliability and lifespan of the

system. Hence, nearly equal speeds for all wheels are expected
for an excellent steering law. Both CMG singularity avoidance
and wheel speed equalization can be achieved by a null space

solution that generates zero torque. In this section, the null
space solution is derived, together with the proof for a theorem
that shows the existence of the null space solution for all CMG
singularities.

The corresponding homogeneous equation of Eq. (9) is

0 ¼ Rx ð13Þ
and a general solution of Eq. (13) is

xN ¼ kNPRy ð14Þ
where kN is a constant scalar to be determined; y is an arbi-

trary 2n� 1 vector; PR ¼ ðE2n � Rþ
wRÞW is a positive semi-

definite symmetric matrix, with E2n the 2n-order identity
matrix. The Lyapunov method is used to design a vector
y to achieve singularity avoidance and wheel speed

equalization.
Let df and Xf be the desired gimbal angle position and the

desired wheel speed, respectively, then an error state variable

can be defined by ea ¼ df � d

Xf �X

� �
. Its time derivative is

_ea ¼ �ðxT þ xNÞ ¼ �x. Selecting Va ¼ 1
2
eTa ea P 0 as the Lya-

punov function and using Eq. (14), the time derivative of Va is

_Va ¼ eTa _ea ¼ �eTa ðxT þ xNÞ ¼ �eTa xT � kNe
T
aPRy ð15Þ
347
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Clearly, if y chosen as y ¼ ea, kNe
T
aPRy takes its maximum

positive value, _Va becomes as small as possible. According to
the Lyapunov theorem, the error variable ea is global asymp-
totically stable if the null space solution is given by

xN ¼ kNPRy ¼ kNPRea

¼ kNðE2n � Rþ
wRÞW

df � d

Xf �X

� � ð16Þ

Next, the desired gimbal angle position df and wheel speed
Xf are computed. Xf can be chosen directly as the expected

constant value of the wheel speed, but the choice of df is much
more complicated, as is shown below.

In order to obtain df, define Dd ¼ df � d as the gimbal angle

error and j2 ¼ r3
r1
as a second singularity measurement, where

r1v and r3t are the maximum and minimum singular values
of At, respectively. Let j2ðdÞ and j2ðdþ DdÞ denote the singu-
larity measurement at times t and tþ Dt, respectively, where Dt
is a small time interval. By employing first order Taylor expan-
sion we obtain

j2ðdþ DdÞ ¼ j2ðdÞ þ @j2

@d

� �T

Dd ð17Þ

Notice that the range of j2 is 0 6 j2 6 1, and the further
the gimbal position is away from singular states, the closer

the singularity measurement j2 is to 1. Set j2ðdþ DdÞ as the
maximum value of 1, and substituting it into Eq. (17) we can
get the minimum norm solution of Dd as

Dd ¼ @j2

@d

@j2

@d

� �T
@j2

@d

" #�1

ð1� j2ðdÞÞ ¼ 1� j2ðdÞ
j@j2=@dj2

� @j2

@d
ð18Þ

where

@j2

@d
¼ � 1

r1t

uT3ts1v13;t

uT3ts2v23;t

..

.

uT3tsnvn3;t

2
66664

3
77775þ r3t

r2
1t

uT1ts1v11;t

uT1ts2v21;t

..

.

uT1tsnvn1;t

2
66664

3
77775 ð19Þ

(for the deduction of Eq. (19), see Appendix A).
Using Eq. (18), the desired gimbal angle df can be computed

as df ¼ dþ Dd.
The preceding null space solution can be used for singular-

ity avoidance and/or escape. The important concern then

arises, like in the CSCMG system, of whether the null space
solution always exists at a singular point or not. The type of
singularity for CSCMGs is called elliptic when its null space

solution does not exist and hyperbolic otherwise.10,11 In con-
trast, as shown in the following theorem, the null space solu-
tion at any CMG singularity of VSCMGs always exists with

the reconfiguration of not only gimbal angles d, but also wheel
speeds X.

Theorem 1. All the internal CMG singularities of VSCMGs are
hyperbolic, i.e. the null space solution at any CMG singularity

always exists.

Proof. Denote a CMG singularity by xs ¼ ds

Xs

� �
, and the cor-

responding ith and total angular momentum by hsi and hsc. By

means of a Taylor series expansion, one can deduce
MGs with high precision, Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.
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dhi ¼ hiðxs þ dxÞ � hiðxsÞ

¼
Xþ1

k¼1

1
k!

@
@di

ddi þ @
@Xi

dXi

� �k

hi
ð20Þ

In addition, the following relations can be derived from Eqs.
(1) and (6):

@hi
@di

¼ tijhij; @2hi
@2di

¼ �hi;
@3hi
@3di

¼ �tijhij; @4hi
@4di

¼ hi;

@aþ4hi
@aþ4di

¼ @ahi
@adi

ða 2 NÞ

@aþbhi
@adi@

bXi
¼ 0 ða 2 f0g [N; b 2 N; b > 1Þ

@hi
@Xi

¼ siI;
@2hi

@di@Xi
¼ tiI;

@3hi
@2di@Xi

¼ �siI;
@4hi

@3di@Xi
¼ �tiI;

@aþ4hi
@aþ3di@Xi

¼ @ahi
@a�1di@Xi

ða 2 NÞ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð21Þ
where jhij ¼ IXi represents the magnitude of angular momen-

tum hi. Substituting Eq. (21) into Eq. (20), we obtain

dhi ¼ ðtijhijddi þ siIdXiÞ þ 1

2!
½�hiðddiÞ2 þ tiIddidXi�

þ 1

3!
½�tijhijðddiÞ3 � siIðddiÞ2dXi�

þ 1

4!
hiðddiÞ4 � tiIðddiÞ3dXi

h i

þ 1

5!
tijhijðddiÞ5 þ siIðddiÞ4dXi

h i
þ � � �

¼ ðtijhijddi þ siIdXiÞ 1� 1

3!
ðddiÞ2 þ 1

5!
ðddiÞ4 � . . .

� �

þ ðhiddi � tiIdXiÞ � 1

2!
ddi þ 1

4!
ðddiÞ3 � 1

6!
ðddiÞ5 þ � � �

� �

ð22Þ
By virtue of power series expansion, we have

1� 1
3!
ðddiÞ2 þ 1

5!
ðddiÞ4 � � � � ¼ sinðddiÞ

ddi

� 1
2!
ddi þ 1

4!
ðddiÞ3 � 1

6!
ðddiÞ5 þ � � � ¼ 1�cosðddiÞ

ddi

8><
>: ð23Þ

When ddi ! 0, sinðddiÞ
ddi

! 1, 1�cosðddiÞ
ddi

! ddi
2
. By substituting these

into Eq. (22), we have

dhi ¼ ðtijhijddi þ siIdXiÞ þ 1

2
ðhiddi � tiIdXiÞddi ð24Þ

which can be used to show that

dhc ¼
Xn

i¼1

dhi

¼ �ðCddþDdXÞ þ 1

2

Xn

i¼1

½hiðddiÞ2 � tiIddidXi� ð25Þ

When the CMG sub-mode of the VSCMGs is singular, the fol-
lowing constraints hold:

u � ti ¼ 0 ði ¼ 1; 2; . . . ; nÞ ð26Þ

432432

Please cite this article in press as: Huang X et al. A new steering approach for VSC
cja.2016.10.017
where u represents the singular direction. With Eq. (26) and

the equation CddþDdX ¼ 0, since dx ¼ dd
dX

� �
is null

motion, taking the dot product of Eq. (25) with u results in

udhc ¼ 1

2

Xn

i¼1

uhiðddiÞ2 ¼ 1

2
ddTPdd ð27Þ

where P ¼ ½p1; p2; . . . ; pn�d ¼ ½uh1; uh2; . . . ; uhn�d. The definition
of null motion implies dhc � 0, and thus Eq. (27) becomes

ddTPdd ¼ 0 ð28Þ
To obtain a null displacement solution for dd, express the

overall null variations dx as a linear combination of its null
space basis vectors based on Eq. (13):

dd

dX

� �
¼ dx ¼

X2n�rankðRÞ

i¼1

kini ¼ Nk ¼ Nd

NX

� �
k ð29Þ

where k ¼ ½k1; k2; . . . ; k2n�rankðRÞ�T is weight vector;

N ¼ ½n1; n2; . . . ; n2n�rankðRÞ�T are null space basis vectors, with

Nd and NX the top and bottom half sub-matrices of N, respec-
tively, both with the dimension n� ð2n� rankðRÞÞ. Note that
for a non-coplanar VSCMG system, we have rankðRÞ ¼ 3 and

2n� rankðRÞ ¼ 2n� 3 > n. From Eq. (29) we obtain

dd ¼ Ndk ð30Þ
Substituting it into Eq. (28) produces

kTQk ¼ 0 ð31Þ
where Q ¼ NT

dPNd. This quadratic form represents a con-

straint equation that the admissible null motions must satisfy

in the vicinity of a singular point. For any k satisfying Eq.
(31), a null motion can be obtained by substituting it into
Eq. (29).

Similarly to CSCMGs, the solutions to Eq. (31) can be
classified according to the properties of the quadratic form as
(i) definite Q or (ii) indefinite or singular Q. When condition (i)
holds, the only solution to Eq. (31) is k ¼ 0, which indicates

that this singular point is an isolated point and null motion is
impossible; thus escape by null motion is impossible from this
type of singular configuration. This type of singularity can be

also termed elliptic. The other possibility for Q is to be
indefinite or singular. This type of singularity can be termed
hyperbolic. A nonzero solution about k implies that null

motion can be generated at the singularity, which generally
guarantees escape from that singular point.

As a fact, Q is definitely singular for VSCMGs, which
demonstrates that all internal CMG singularities are hyper-
bolic. By means of singular value decomposition, Nd is given

by

Nd ¼ UdSdVd

¼ ½u1d; u2d; . . . ; und�
r1d

. .
.

rnd

0n�ðn�3Þ

2
664

3
775

vT1d

vT2d

..

.

vTð2n�3Þd

2
666664

3
777775

ð32Þ
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where rid (i ¼ 1; 2; . . . ; n) are the singular values of Nd, and uid,

vid the column vectors of Ud and Vd, respectively. As a result,
one can obtain

Q ¼ NT
dPNd ¼ v1d; v2d; . . . ; vnd½ �

r1d

. .
.

rnd

0ðn�3Þ�n

2
66664

3
77775

uT1d

uT2d

..

.

uTð2n�3Þd

2
666664

3
777775

�
p1

. .
.

pn

2
664

3
775 � u1d; u2d; . . . ; und½ �

r1d

. .
.

rnd

0n�ðn�3Þ

2
664

3
775

�

vT1d

vT2d

..

.

vTð2n�3Þd

2
666664

3
777775 ¼

Xn

i¼1

gvidv
T
id

ð33Þ
where g ¼ p1r

2
id: Eq. (33) illustrates that rankðQÞ 6 n, and,

taking the relationship n > 3 into consideration, we obtain

rankðQÞ 6 n < 2n� 3 ð34Þ
Since the dimension of Q is ð2n� 3Þ � ð2n� 3Þ, Q is singular
and implies that all the CMG singularities of the VSCMGs

are hyperbolic. This completes the proof. h
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3.3. A strategy of compensating the dead-zone nonlinearity of

gimbal speeds

The dead-zone nonlinearity of rotational motion is one of the

important problems that decrease servo control accuracy.
When the rotation speed is within the dead-zone, the control
accuracy will deteriorate rapidly due to friction. Furthermore,

because of the torque amplification effect, for VSCMGs, the
dead-zone nonlinearity of gimbal speeds is much more signifi-
cant than that of wheel speeds. Therefore, an attempt is made

here to improve the dead-zone nonlinearity of gimbal rotation
speeds.

Recall that _d ¼ _dT þ _dN, where _dT produces output torque

while _dN is devoted to singularity avoidance. In order to miti-
gate the dead-zone effect, an scheme is designed to properly

adjust _dT.

Suppose the threshold of the dead-zone is _dmin. If the ith

gimbal rotation speed falls into the dead-zone, i.e. j _dij < _dmin,

we can adjust the solution _diT to _diT þ D _diT along its previous

rotational direction, which makes a new gimbal speed _d�i out

of the dead-zone _dmin. That is to say, we get a new gimbal speed
_d�i such that

j _d�i j ¼ jð _diT þ D _diTÞ þ _diNj ¼ jð _diT þ _diNÞ þ D _diTj
¼ j _di þ D _diTj P _dmin ð35Þ

As the increment D _diT is along the same direction of _diT, an
adjusting algorithm can be given by

D _diT ¼ signð _diÞj _dmin � j _dijj j _dij < _dmin

0 j _dij P _dmin

(
ð36Þ
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Note that D _diT induces an error torque, which can be com-
puted as

DT ¼ �AtI½X�dD _diT ð37Þ
This error torque can be compensated by the RW sub-mode

D _X ¼ I�1AT
s ðAsA

T
s Þ

�1
DT ð38Þ

The resulting new wheel acceleration is

_X� ¼ _Xþ D _X ð39Þ
Since the magnitude of D _diT is below the dead-zone _dmin,

D _diT and thus DT takes small values. This feature ensures

that torque error compensation is feasible by the RW
sub-mode.

4. Steering law of RW single mode

When small torque is required, such as in attitude stabilization,
VSCMGs are expected to work in the RW single mode. To this

end, a steering law for this mode, including a switching process
between the CMG/RW hybrid mode and the RW single mode,
is designed in this section.

4.1. Two transient processes

The RW single mode can be considered as a special case of the
CMG/RW hybrid mode in which the gimbals are locked. In

this section, the process of locking the gimbals is designed as
a transient process by the following two steps.

4.1.1. Gimbal speed planning of the transient process

The goal of the locking transient process is to reduce the gim-
bal speed to zero smoothly and, at the same time, maintain the
desired output torque. Based on the former sections, the gim-

bal speed _d is composed of a weighted pseudo-inverse solution
_dT that generates a nonzero torque and a null space solution _dN
that generates a zero torque. This leads to the gimbal speed
planning method of the transient process, which is to reduce

the _dT and _dN to zeros synchronously.

The planning of _dT can be realized by planning its weight
matrix W; specifically, we design Wgi in W ¼
diagðWg1;Wg2; . . . ;Wgn;Ws1;Ws2; . . . ;WsnÞ to be the following

declining parabolic function

Wgi ¼
W0

gi

T2
tr

ðt� TtrÞ2 i ¼ 1; 2; . . . ; n ð40Þ

where t is current time from the beginning of the transient pro-

cess; W0
gi is the initial value of Wgi; and Ttr is the time span of

the transient process. The decrease of Wgi will produce a tor-

que error DT, and this can be compensated via the RW sub-

mode by adding D _X to the original wheel acceleration _X where

D _X is given by

D _X ¼ I�1AT
s ðAsA

T
s Þ

�1
DT ð41Þ

The planning of _dN can be realized by planning the coeffi-
cient kN of the whole null space solution xN ¼ kNPRy. kN is
also defined as a declining parabolic function:
MGs with high precision, Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.
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kN ¼ k0N
T2

tr

ðt� TtrÞ2 ð42Þ

where k0N is the initial value of kN. Since the output torque of

the null space solution is zero, the adjustment of kN does not
introduce any torque error.

4.1.2. A null space solution for integrated singularity avoidance
and wheel speed equalization during transient process

There are three goals of this null space solution: singularity
avoidance of the gimbals, singularity avoidance of the wheels,

and wheel speed equalization. Compared with the second step
in the last section, the only difference is that the additional
goal for singularity avoidance of wheels is demanded here.

Therefore, the method to get a null space solution here could
be similar to that of the last section. The variation is only that
the singularity measurement of the gimbals be replaced by an

integrated singularity measurement j2;all, which reflects the sin-

gular status for both the gimbals and the wheels, and is defined

by

j2;all ¼ j2;cmg � j2;rw ð43Þ
where j2;cmg is the second singularity measurement of the gim-

bals, which is just the former j2; and j2;rw is that of the wheels.

j2;rw can be defined by j2;rw ¼ r3s
r1s
, where r1s and r3s are the

maximum and minimum singular values of As, respectively,

which reflect wheel configuration. It should be noted that both
j2;cmg and j2;rw range from 0 to 1. The further the correspond-

ing configuration is from singular states, the more the mea-
surement is close to 1. So, if we set the expected integrated
singularity measurement as j2;all ¼ j2;cmg � j2;rw ¼ 1, we can

have j2;cmg ¼ 1 and j2;rw ¼ 1. Thus, both the gimbals and

wheels will be far away from their singular states. For the inte-

grated singularity measurement j2;all,
@j2;all
@d

can be computed as

follows:
Supposing that the singular value decomposition of At is

given by

At ¼ UtStV
T
t ¼

X3

i¼1

rituitv
T
it ð44Þ

We can obtain

@j2;cmg

@d
¼ � 1

r1t

uT3ts1v13;t

uT3ts2v23;t

..

.

uT3tsnvn3;t

2
66664

3
77775þ r3t

r2
1t

uT1ts1v11;t

uT1ts2v21;t

..

.

uT1tsnvn1;t

2
66664

3
77775 ð45Þ

Similarly, supposing the singular value decomposition of As is

given by

As ¼ UsSsV
T
s ¼

X3

i¼1

risuisv
T
is ð46Þ

where ris (i ¼ 1; 2; 3) are the singular values of As, and uis, vis
the column vectors of Us and Vs, respectively. We then obtain

@j2;rw

@d
¼ 1

r1s

uT3st1v13;s

uT3st2v23;s

..

.

uT3stnvn3;s

2
66664

3
77775� r3s

r2
1s

uT1st1v11;s

uT1st2v21;s

..

.

uT1stnvn1;s

2
66664

3
77775 ð47Þ
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where vij;s are the elements of vector vis. Finally, the result of
@j2;all
@d

can be expressed as

@j2;all

@d
¼ @ðj2;cmgj2;rwÞ

@d
¼ @ðj2;cmgÞ

@d
j2;rw þ j2;cmg

@ðj2;rwÞ
@d

ð48Þ

The transient process of unlocking the gimbals from the
RW single mode to the CMG/RW hybrid mode is just the

reverse process of locking the gimbals described above, so its
planning work can be carried out similarly.

4.2. A steering law of RWs with gimbals locked completely

When the gimbals are completely locked, the VSCMGs have
been turned into RWs, and it is essentially the same as general
reaction wheel configurations. As long as the wheel configura-

tion is nonsingular, which can be guaranteed by the transient
process design, and wheel speeds are absent from saturation,
three independent control torques can always be generated.

A pseudo-inverse steering law can be designed as

_X ¼ �I�1AT
s ðAsA

T
s Þ

�1
Tc ð49Þ
5. Numerical simulations

Numerical simulations are presented in this section to study

the performance of the proposed steering law for VSCMGs.
Attitude maneuvering/stabilization of a spacecraft is involved.
Rigid spacecraft dynamics and the proportional-derivative

(PD) controller deduced in Ref. 14 are applied here. We
rewrite them here with slight symbol changes for convenience:

J _xþ _Jxþ x�ðJxþ AsIXÞ ¼ Tc ð50Þ

Tc ¼ ½Tcx;Tcy;Tcz�T
Tcx ¼ Kpxe/ þ Kdx _e/ þ xoðIy � Ix � IzÞ _w� hczxo

Tcy ¼ Kpyeh þ Kdy _eh

Tcz ¼ Kpzew þ Kdz _ew þ xoðIx þ Iz � IyÞ _/þ hcxxo

8>>>><
>>>>:

ð51Þ

where x is the attitude angle velocity of the spacecraft; xo is

the magnitude of the orbit angle velocity; e/ ¼ /r � /,
eh ¼ hr � h and ew ¼ wr � w are attitude errors of the three

axes between the actual Euler angles ð/; h;wÞ and the expected

final Euler angles ð/r; hr;wrÞ; J ¼ Io þ AgIgA
T
g þ AsIsA

T
s þ

AtItA
T
t is the inertia of the total system, with Io the inertia of

the spacecraft without VSCMGs, Ig ¼ diagðIg1; Ig2; . . . ; IgnÞ,
Is ¼ diagðIs1; Is2; . . . ; IsnÞ, It ¼ diagðIt1; It2; . . . ; ItnÞ, and Ig;i, Is;i
and It;i (i ¼ 1; 2; . . . ; n) the moments of inertia along g, s and

t of the ith VSCMG, respectively, and Ag ¼ ½g1; g2; . . . ; gn�;
Ix, Iy and Iz are the diagonal elements of J, which mean the

principal axial moments of inertia; hcx and hcz are x and z com-

ponents of the momentum of the total system, which can be
computed as H ¼ Jx; Kpx, Kpy, Kpz and Kdx, Kdy, Kdz are PD

parameters of the PD controller.
The main parameters of the spacecraft-VSCMGs system

used in the simulations are shown in Table 1, where Xmin

and Xmax are the minimum and maximum values of wheel
speed of a VSCMG; X0 is Nominal wheel speed of a VSCMG;
_dmin and _dmax are the minimum and maximum values of gimbal
rotational speed of a VSCMG; d0 is the initial gimbal angles of
the VSCMGs. These parameters are close to those of the
MGs with high precision, Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.
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Table 1 System model parameters and initial conditions.

Variable Value

Io (kg m2) 1100 �20 �10
�20 900 �15
�10 �15 800

2
4

3
5

Ig;i; Is;i; It;i ði ¼ 1; 2; . . . ; nÞ (kg m2) 0.0336, 0.0535, 0.0356

I (kg m2) 0.0398

Xmin, Xmax (r/min) 3600, 7200

X0 (r/min) 6000

_dmin, _dmax ((�)/s) 0.05, 60

d0 (�) ½90; 0;�90; 0�T
Te1;Te2;Te3 (N m) 0.0002, 0.002, 0.02

Fig. 3 VSCMG system with standard pyramid configuration.

Fig. 4 Singularity measurements j1 without and with null

motion.
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Pleiades-HR.5 Assume 4 VSCMGs are mounted in the space-

craft with a standard pyramid configuration, as shown in
Fig. 3. In addition, Gaussian distributions are applied for
the torque noises of the RW sub-mode, and CMG sub-mode

outside and inside of the gimbal dead-zone, with all zero means
and standard deviations Te1, Te2, Te3, respectively.

The PD parameters for the controller are chosen as

Kpx ¼ 77; Kdx ¼ 600

Kpy ¼ 60; Kdy ¼ 500

Kpz ¼ 65; Kdz ¼ 550

8><
>: ð52Þ

Table 2 summarizes the parameters for the steering law.

The results presented in Figs. 4–11 are composed of two
parts. The first, an attitude maneuver with initial attitude
(45�, 0�, 0�) and expected final attitude (0�, 0�, 0�), is carried
655

656

657

658

Table 2 Control

parameters.

Variable Value

Wgj (j ¼ 1; 2; 3; 4) 1.0

W0
sj (j ¼ 1; 2; 3; 4) 40.0

e 5.0

kN 0.2

Fig. 5 Wheel speeds without and with null motion.

Please cite this article in press as: Huang X et al. A new steering approach for VSC
cja.2016.10.017
out to validate the effectiveness of the steering law for
CMG/RW hybrid mode. Fig. 4 plots the singularity measure-

ments j1 without (Case 1) and with (Case 2) a null motion. In
Case 2, we can see that j1 increases from zero rapidly, imply-
MGs with high precision, Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.

http://dx.doi.org/10.1016/j.cja.2016.10.017
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Fig. 6 Torque error without and with compensation of dead-

zone nonlinearity.

Fig. 7 A typical work cycle.

Fig. 8 Gimbal speeds during work cycle.

Fig. 9 Singularity measurements of gimbals and wheels during

work cycle.
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ing an rapid escape from the initial singular state, and it
remains almost always greater than 0.9 afterwards. In contrast,
j1 can easily become smaller than 0.5 in Case 1. In other

words, the gimbal configuration in Case 2 is further away from
singular states than that in Case 1. Fig. 5 presents variations of
Please cite this article in press as: Huang X et al. A new steering approach for VSC
cja.2016.10.017
wheel speeds without (Case 1) and with (Case 2) a null motion,
and it clearly shows that all wheel speeds tend to approach the
desired wheel speed of X0 ¼ 6000 r=min in Case 2, while they

almost remain unchanged in Case 1. From these two figures,
MGs with high precision, Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.
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Fig. 10 Wheel speeds during work cycle.
Fig. 11 Torque errors in CMG/RW hybrid mode and RW single

mode.

10 X. Huang et al.

CJA 728 No. of Pages 13

14 November 2016
the effectiveness of singularity avoidance/escape and wheel
speed equalization via null motion is verified. Fig. 6 compares

the torque errors in a time interval of the cases without (Case
1) and with (Case 2) the compensation of the dead-zone non-
linearity. In this time interval, two gimbal speed dead zones
appear if no compensation is added. We can see that the tor-

que errors in three axis, Tx;error, Ty;error and Tz;error, are signifi-

cantly decreased after the compensation.
In the second part, an attitude stabilization with initial state

(1.5�, �1.2�, 0.9�) is implemented to validate the effectiveness

of the steering law of RW single mode. VSCMGs go through
a typical complete work cycle, as shown in Fig. 7, starting from
and eventually getting back to the CMG/RW hybrid mode in
the process. Figs. 8–10 show variations in gimbal speeds, the

second singularity measurements of the gimbals/wheels, and
the wheel speeds during the work cycle. Fig. 8 shows the
smoothness of the gimbal speeds in the whole process. Fig. 9

shows that the second singularity measurements of both the
gimbals and the wheels are almost always larger than 0.1,
implying that constant nonsingular configurations are held

for both (once the gimbals or the wheels are near to a singular
state, the responding singularity measurement j2;cmg or j2;rw

will be approximately smaller than 0.05). Fig. 10 shows that
the wheel speeds are successfully equalized to the expected
Please cite this article in press as: Huang X et al. A new steering approach for VSC
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speed X0 all the time. These three figures validate the design
of the transient processes. Fig. 11 compares torque error of

the same small command torque in CMG/RW hybrid mode
with compensation of the gimbal speed dead-zone (Case 1,
which is not switched into RW single mode) and in RW single
mode (Case 2, as in Fig. 7). It shows that the torque error is

weakened by one order of magnitude in Case 2, which meets
our expectations.

If a singularity is hyperbolic for CSCMGs under a gimbal

configuration, the corresponding CMG singularity of
VSCMGs under the same gimbal configuration is definitely
hyperbolic, since the null motion of CSCMGs is also fit for

VSCMGs. Now are two examples showing that elliptic singu-
larities for CSCMGs are still hyperbolic for VSCMGs.

(1) Case 1

For simplicity, unit and all equal magnitude CMG momen-

tum is assumed. The gimbal angles are d ¼ ½90�; 0�;�90�; 0��T.
The fact rankðCÞ ¼ 2 demonstrates the singularity of this

configuration.
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Table 3 Singular type results of an ordinary configuration.

Actuators Q eigðQÞ Definite/Indefinite/Singular Q Singular type

CSCMGs �0:6618 1:0174
1:0174 �1:6364

� � �2:2772
�0:0210

� �
Negative definite Elliptic

VSCMGs �0:6618 1:0174 �0:5024 0:5826 0:8827
1:0174 �1:6364 0:5659 �1:8961 �0:7322
�0:5024 0:5659 �0:2227 0:3389 0:3743
0:5826 �1:8961 0:3389 �1:2425 �0:4159
0:8827 �0:7322 0:3743 �0:4159 �0:6614

2
66664

3
77775

�4:3040
�0:9150
0:5409
0:2532

0

2
66664

3
77775

Infinite and singular Hyperbolic
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For this case, the judgment matrix Q for CSCMGs by Ref.
11 is

QCSCMGs ¼
1:2000 �0:7200

�0:7200 0:8640

� �
ð53Þ

and its eigenvalues are

eigðQCSCMGsÞ ¼ ½0:2927; 1:7713�T ð54Þ
It is evident that QCSCMGs is positive definite and this singular-
ity is elliptic.

On the contrary, in case of VSCMGs, the judgment matrix
is

QVSCMGs¼

1:2000 �0:7200 0:6000 0:7200 �0:6000

�0:7200 0:8640 �2:3867 �2:8640 2:3867

0:6000 �2:3867 3:3778 4:0533 �3:3778

0:7200 �2:8640 4:0533 4:8640 �4:0533

�0:6000 2:3867 �3:3778 �4:0533 3:3778

2
6666664

3
7777775
ð55Þ

and its eigenvalues are

eigðQVSCMGsÞ ¼ ½�0:7727; 0; 0; 1:1120; 13:3443�T ð56Þ
We can see that QVSCMGs is indefinite and singular, which leads

to a hyperbolic singularity.

(2) Case 2

Generally speaking, one wheel speed of the VSCMGs is not
absolutely consistent with another. Therefore, a more general

case is presented here, with the CMG momentum magnitudes
½h1; h2; h3; h4� ¼ 1:0; 1:25; 1:2; 1:5½ � Nm s instead of all
unit and equal magnitudes, and an ordinary gimbal angle con-
figuration d ¼ 115:0226734945402�; 31:838080532974608�;½
151:0592758679665�;�4:953509020906268��T. rankðCÞ ¼ 2

indicates the singularity of this configuration. Corresponding
results are shown in Table 3. In this case, an elliptic singularity
for CSCMGs is hyperbolic for VSCMGs once more.

From these two examples, we can see that the CMG singu-
lar type of VSCMGs is hyperbolic while that of CSCMGs is
elliptic in a case of the same gimbal angles, and this is in accor-

dance with the conclusion of Theorem 1.

6. Conclusions

(1) In order to achieve high-precision output torque,

VSCMGs operation modes are distinguished according
to the command torque; the CMG/RW hybrid mode
802
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for large command torque and the RW single mode with
gimbals locked for small command torque.

(2) The steering law for the CMG/RW hybrid mode covers
the problems of torque distribution, singularity avoid-

ance/escape, wheel speed equalization, and compensa-
tion of the dead-zone nonlinearity of gimbal speeds. In
addition, a theorem and proof illustrate that all internal

CMG singularities of VSCMGs are definitely
hyperbolic.

(3) Mode switching strategies are realized by the planning

of the transient processes for locking or unlocking the
gimbals, and the steering law for the RWs with com-
pletely locked gimbals is designed by using the pseudo-

inverse solution. They comprise the steering law of the
RW single mode.

(4) Numerical results validate the effectiveness of the pro-
posed steering law, which allows a set of VSCMGs to

meet the requirement of providing both high-precision
large and high-precision small torque.
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Appendix A

The second singularity measurement of the gimbal structure is
defined as

j2 ¼ r3t

r1t

ðA1Þ

where r1t and r3t are the maximum and minimum singular val-

ues of At, respectively. By means of singular value decomposi-
tion, At is given by

At ¼ UtStV
T
t ¼

X3

i¼1

rituitv
T
it ðA2Þ

where rit (i ¼ 1; 2; 3) are the singular values of At, and uit, vit
the column vectors of Ut and Vt, respectively. Eq. (A2) multi-
plied by vjt and ujt leads to

Atvjt ¼ rjtujt j ¼ 1; 2; 3 ðA3Þ

AT
t ujt ¼ rjtvjt j ¼ 1; 2; 3 ðA4Þ

Calculating uTjt
@ðEq: ðA3ÞÞ

@di
þ vTjt

@ðEq: ðA3Þ
@di

results in
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uTjt
@At

@di
vjt þ vTjt

@AT
t

@di
ujt þ ðuTjtAt � vTjtrjÞ @vjt

@di

þ ðvTjtAT
t � uTjtrjtÞ @ujt

@di
¼ @rjt

@di
ðuTjtujt þ vTjt vjtÞ ðA5Þ

This allows for
@rjt
@di

to be expressed as

@rjt

@di
¼ 1

2
uTjt

@At

@di
vjt þ vTjt

@AT
t

@di
ujt

� �
¼ uTjt

@At

@di
vjt ðA6Þ

where @At

@di
can be obtained by the di derivative of Eq. (8):

@At

@di
¼ ½03�1; 03�1; . . . ; 03�1;�si; 03�1; 03�1; . . . ; 03�1�3�n ðA7Þ

Substituting Eq. (A7) into Eq. (A6),
@rjt
@di

becomes

@rjt

@di
¼ �uTjt sivij;t ðA8Þ

with the definition vTjt ¼ ½v1j;t; v2j;t; . . . ; vij;t; . . . ; vnj;t�T:
Based on Eq. (A8), @j2

@di
can finally be computed as

follows:

@j2

@di
¼ 1

r1t

� @r3t

@di
� r3t

r2
1t

� @r1t

@di
¼ � 1

r1t

uT3ts1v13;t

uT3ts2v23;t

..

.

uT3tsnvn3;t

2
66664

3
77775

þ r3t

r2
1t

uT1ts1v11;t

uT1ts2v21;t

..

.

uT1tsnvn1;t

2
66664

3
77775 i ¼ 1; 2; . . . ; n

ðA9Þ
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