915 research outputs found

    Fabrication of multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors by using CF4 plasma treatment

    Get PDF
    Multianalyte CeO2 biosensors have been demonstrated to detect pH, glucose, and urine concentrations. To enhance the multianalyte sensing capability of these biosensors, CF4 plasma treatment was applied to create nanograin structures on the CeO2 membrane surface and thereby increase the contact surface area. Multiple material analyses indicated that crystallization or grainization caused by the incorporation of flourine atoms during plasma treatment might be related to the formation of the nanograins. Because of the changes in surface morphology and crystalline structures, the multianalyte sensing performance was considerably enhanced. Multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors exhibit potential for use in future biomedical sensing device applications

    Using data envelopment analysis to support best-value contractor selection

    Get PDF
    Selecting an appropriate contractor or supplier is essential to the successful implementation of a public procurement project. The Taiwan government frequently applies the best-value (BV) tendering method, a multi-criteria evaluation method, to procure projects. However, the selection process of the winner for a BV-based procurement project is generally subjective and thus is easily accused of corruptions. To develop a systematic method to support contractor selection, this study proposes using the Data Envelopment Analysis (DEA) to facilitate the criteria evaluations for each bidder during the short-listing stage. The evaluation results of using the DEA are a list of potential BV winners who are then suggested to enter into the final selection stage. Based on three case studies related to service procurement projects, this research finds that the DEA is suitable of assessing the relative efficiencies among bidders when the BV approach is applied. Lessons learned here should be helpful in applying the DEA to aid bid evaluations in other supplier selection problems. First published online: 24 Aug 201

    3D Geometry of the Chelungpu Thrust System in Central Taiwan: Its Implications for Active Tectonics

    Full text link
    This study is aimed at constructing a 3D subsurface geometry of the Chelungpu thrust and its associated structures, as well as examining the implications of the studies results for active tectonics in the area. Nine balanced cross-sections were constructed across the foothills belt in the study area to delineate the subsurface geometry of the major thrusts in the foreland of the fold-and-thrust belt

    Kinematic Analyses of a Parallel-type Independently Controllable Transmission

    Get PDF
    This study proposes a novel design of a parallel-type Independently Controllable Transmission (ICT). The parallel-type ICT can produce a continuously variable transmission ratio and a required angular output velocity that can be independently manipulated by a controller yet not affected by the angular velocity of the input shaft. The proposed parallel-type ICT is composed of two planetary gear trains and two transmission-connecting members. A prototype was built to investigate its kinematic characteristics and verify application feasibility

    Orderly arranged NLO materials on exfoliated layeredtemplates based on dendrons with alternating moietiesat the periphery†

    Get PDF
    Nonlinear optical dendrons with alternating terminal groups of the stearyl group (C18) and chromophorewere prepared through a convergent approach. These chromophore-containing dendrons were used asthe intercalating agents for montmorillonite via an ion-exchange process. An orderly exfoliatedmorphology is obtained by mixing the dendritic structure intercalated layered silicates with a polyimide.As a result, optical nonlinearity, i.e. the Pockels effect was observed for these nanocomposites withoutresorting to the poling process. EO coefficients of 9–22 pm V 1 were achieved despite that relativelylow NLO densities were present in the nanocomposites, particularly for the samples comprising thedendrons with alternating moieties. In addition, the hedging effects of the stearyl group on the selfalignmentbehavior, electro-optical (EO) coefficient and temporal stability of the dendron-intercalatedmontmorillonite/polyimide nanocomposites were also investigated

    Role of Pigment Epithelium-Derived Factor in Stem/Progenitor Cell-Associated Neovascularization

    Get PDF
    Pigment epithelium-derived factor (PEDF) was first identified in retinal pigment epithelium cells. It is an endogenously produced protein that is widely expressed throughout the human body such as in the eyes, liver, heart, and adipose tissue; it exhibits multiple and varied biological activities. PEDF is a multifunctional protein with antiangiogenic, antitumorigenic, antioxidant, anti-inflammatory, antithrombotic, neurotrophic, and neuroprotective properties. More recently, PEDF has been shown to be the most potent inhibitor of stem/progenitor cell-associated neovascularization. Neovascularization is a complex process regulated by a large, interacting network of molecules from stem/progenitor cells. PEDF is also involved in the pathogenesis of angiogenic eye disease, tumor growth, and cardiovascular disease. Novel antiangiogenic agents with tolerable side effects are desired for the treatment of patients with various diseases. Here, we review the value of PEDF as an important endogenous antiangiogenic molecule; we focus on the recently identified role of PEDF as a possible new target molecule to influence stem/progenitor cell-related neovascularization
    corecore