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a b s t r a c t

Multianalyte CeO2 biosensors have been demonstrated to detect pH, glucose, and urine concentrations.
To enhance the multianalyte sensing capability of these biosensors, CF4 plasma treatment was applied
to create nanograin structures on the CeO2 membrane surface and thereby increase the contact surface
area. Multiple material analyses indicated that crystallization or grainization caused by the incorporation
of flourine atoms during plasma treatment might be related to the formation of the nanograins. Because
of the changes in surface morphology and crystalline structures, the multianalyte sensing performance
was considerably enhanced. Multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosen-
sors exhibit potential for use in future biomedical sensing device applications.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Over the past 10 years nanostructure-based biosensors have
been intensively studied because of their distinct sensing capabil-
ity [1,2]. It is commonly acknowledged that the biosensing proper-
ties of these sensors are not only relevant to their dimensions but
also to their shapes [3–5]. Therefore, managing the morphologies
of sensing membranes is a crucial and an efficient approach to
acquiring preferable features [6,7]. Shape-controlled fabrication
processes have been demonstrated, and nanostructures with vari-
ous shapes such as cubes, wires, and rods have been designed
using various synthesis techniques [8–10]. Because the surface
contact area of a membrane can be enlarged and the number of
the surface sites can be increased, biosensors with desirable mor-
phologies can achieve high sensitivity and linearity [11,12].
Recently, EIS structures have been intensively investigated because
of their simple structure and fast detection [13,14]. To enhance
multianalyte sensing performance, various materials, alternative
processes, and treatments such as annealing have been incorpo-
rated [15,16]. However, multianalyte biosensing EIS membranes
with nanostructures on the membrane have not yet been clearly

reported. In this research, we introduced CF4 plasma treatment
to shape nanostructures and, thus, increase the surface area and
the number of surface sites of the membrane [17]. Nanograin
structures formed using plasma treatment were observed in
atomic force microscope (AFM) and scanning electron microscope
(SEM) images [18]. Secondary ion mass spectroscopy (SIMS) results
indicated that fluorine atoms on the membrane surface might be
related to the formation of nanostructures. Consistent with the
AFM and SEM images, X-ray diffraction (XRD) patterns and X-ray
photoelectron spectroscopy (XPS) measurements confirmed that
crystallization and grainization of CeO2 might cause the formation
of nanostructures [19]. The CeO2 multianalyte biosensor demon-
strated multiple sensing capability with solutions containing
H+, Na+, K+, glucose [20], and urea [21]. Furthermore, the results
indicated that the formation of nanograins on the CeO2 membrane
further enhanced the multianalyte sensing capability of various
electrolytes.

The impact of the development of nanograins on the under-
standing of the detecting film can be illustrated by considering
the site-binding design in an explanation of the ionic consumption
procedures at the electrolyte/oxide interface [13]. For pH detecting
ability, the reaction voltage relies on the outer lining area prospec-
tive (w), which is an operation of the membrane content and the
pH of the electrolyte [13,22]. The value of (w) can be calculated
using Eq. (2).
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The influence of the formation of nanograins on the detection of
the sensing film can be understood by considering the site-binding
model. To illustrate the ionic absorption procedures at the
electrolyte/oxide interface involved in pH sensing, the detecting
voltage on the surface potential (w) can be expressed as a function
of the membrane material and the pH value of the electrolyte. The
value of (w) can be calculated using Eq. (1).

w ¼ 2:303
kT
q

b
bþ 1

ðpHpzc � pHÞ ð1Þ

where k is Boltzmann’s constant, T is the temperature, q is the ele-
mentary charge, pHpzc is the pH value with zero charge, and b is a
factor that signifies the chemical sensitivity of the gate oxide.
Furthermore, the b value is proportional to the chemical sensitivity
of the gate dielectric and is determined according to the density of
surface hydroxyl groups, as described in Eq. (2).

b ¼ 2q2Ns
ffiffiffiffiffiffiffiffiffiffiffi

KaKb
p

KTCDL
ð2Þ

where Ns is the count of surface site per unit area and CDL is the
double layer capacitance based on the Gouy–Chapman–Stern model
[23]. According to Eqs. (1) and (2), a can be expected to result in a
higher sensitivity and linearity in accordance with the value
revealed in the report [24]. Nanograins formed through plasma
treatment can noticeably increase the surface area and, hence, the
surface sites; therefore, the sensing performance can be enhanced
by incorporating plasma treatment.

2. Experimental details

EIS biosensors containing CeO2 membranes were designed on
4-inch n-type (100) Si wafers with a resistivity of 5–10 X-cm.
After RCA cleaning procedure, the wafers were dropped into 1%
hydrofluoric acid to eliminate oxide from the surface. First, a
50-nm CeO2 membrane was placed on the Si substrate through

radio frequency (rf) sputtering from a cerium target in a diluted
O2 ambient (Ar/O2 = 20 sccm/5 sccm). The rf power and ambient
pressure were 100 W and 20 mTorr, respectively. After deposition,
CeO2 membrane layers were subjected to a post-CF4 treatment in a
plasma-enhanced chemical vapor deposition system with an rf
power of 30 W and a processing pressure of 500 mTorr for 15,
30, and 60 s, respectively. Subsequently, the back-side contact of
the Si wafer was grown using a 300-nm Al film. The size of the
sensing membrane was defined through photolithographic pro-
cessing under a photosensitive epoxy (SU8-2005, Micro-Chem).
EIS structures were then placed on the copper lines of a printed cir-
cuit board by using a silver gel. An epoxy package was included to
separate the EIS structure and the copper line. The device structure
is shown in the supplement data.

(a) (b) 

(d)(c)
Fig. 1. FESEM images of the CeO2 film (a) before and (b) after CF4 plasma treatment for 15 s. AFM images of the CeO2 film (c) before and (d) after CF4 plasma treatment for
15 s.

Fig. 2. SIMS profiles for the CeO2 film treated with CF4 plasma for 15 s.
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To examine the material properties of the sensing membrane,
the CeO2 membrane layer was analyzed using FESEM and AFM to
investigate the nanograins. In addition, XRD and XPS were used
to examine the crystalline structure and chemical bonds of the
membrane layer. After the biosensor was fabricated and packed,
the capacitance–voltage (C–V) curve was measured. To evaluate
the sensing performance from the C–V curve, the responsive volt-
ages for all devices were calculated using 0.4 Cmax (Cmax: maximum
capacitance value in the C–V curve). We used 0.4 Cmax as a
standard line in the C–V curve and calculated the substrate-bias
voltage changes after the device was submerged in solutions with
various pH values. FESEM images were measured using a
SM-7500F JEOL cold-field emission SEM. AFM images were taken
using a Veeco D5000 AFM in tapping mode employing an applied
nanosilicon tip with a 50-N/m spring constant. XRD was performed
using XRD Bede D1. The X-ray source was Cu Ka (k = 1.542 Å), and
the XRD configuration was the Bragg–Brentano theta-2 theta. The
diffraction angle 2h ranged from 20� to 80� with a grazing
incidence angle h of 0.5�. The XPS spectra were performed using
a VG ESCA Scientific Theta Probe (2002). The X-ray spot size, the

take-off angle, and the pass energy were 15 lm, 53�, and 50 eV,
respectively. The X-ray source for XPS was Al Ka (1486.6 eV). The
C–V curves were measured using a precision LCR meter
(HP-4284, Hewlett-112 Packard, USA).

3. Results and discussion

3.1. Material characterizations

To examine nanograins on the membrane surface, FESEM was
used to reveal the surface morphology of the CeO2 membrane layer
before deposition of the metal contact. Before the CF4 plasma
treatment, the membrane surface was flat and no protruded
nanostructures were observed, as shown in Fig. 1(a). After the film
was treated with CF4 plasma for 15 s, the nanograins on the surface
formed, as shown in Fig. 1(b). The average size of a nanograin was
15 nm, and most of the grains exhibited a similar size, indicating
that the CF4 plasma could form uniform nanograins on the mem-
brane surface. Consistent with the FESEM images, AFM analysis
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Fig. 3. C–V curves of (a) the as-deposited CeO2 membrane and the CeO2 membrane treated with CF4 plasma for (b) 15 s, (c) 30 s, and (d) 60 s.
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revealed that uniform nanograins were generated on the mem-
brane surface. After CF4 plasma treatment, the membrane surface
became rougher and nanograins were observed on the membrane
surface, as shown in the AFM images in Fig. 1(c) and (d). The for-
mation of the nanograin structures increased the surface area of
the CeO2 membrane. The number of surface sites, which is related
to sensing capability, also increased.

To gain insight into the influence of CF4 plasma treatment, SIMS
measurement was performed. SIMS results, as shown in Fig. 2,
revealed that fluorine atoms accumulated on the surface and piled
up near the CeO2/Si interface. The accumulation of fluorine atoms
near the surface might result in the formation of Ce–F bonds and
crystallization of the CeO2 film near the surface as shown in the
XRD and XPS analysis in the supplement information. Therefore,
the incorporated fluorine atoms might have caused the formation
of the CeO2 nanograins owing to enhancement of binding.
Furthermore, the fluorine atoms piled up near the CeO2/Si might
repair the dangling bonds, traps, and the defects near the interface
and, thus, enhance the sensing performance of the CeO2

membrane.

To investigate the sensing performance of the CeO2 nanograin
EIS biosensor, the pH sensitivity, pH linearity, hysteresis voltage,
and drift rate were evaluated.

3.2. pH sensitivity and linearity

Fig. 3(a–d) show the C–V curves of the CeO2 membrane and the
sensing membrane treated with CF4 plasma for 15, 30, and 60 s in a
buffer solution with various pH values. The threshold voltage shift
of the CeO2 membranes revealed the sensitivity of the device and
was as high as 55.88 mV/pH. The sensitivities of the as-deposited
membrane and the CeO2 membranes that underwent plasma treat-
ment for 15, 30, and 60 s were 43.20, 53.38, 43.78, and
37.23 mV/pH, respectively, as shown in the supplement data. As
observed in the material analysis, the CeO2 treated in plasma for
15 s exhibited the highest sensitivity. Furthermore, the pH sensing
membrane that underwent CF4 plasma treatment for 15 s
exhibited excellent linearity of 99.83. This was attributed to the
formation of nanograins on the surface CeO2 membrane after
plasma processing. The formation of the nanograins enlarged the
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membrane surface contact area and increased the surface sites.
Therefore, the sensitivity and linearity were noticeably enhanced.
However, as the plasma treatment time increased to 30 and 60 s,
the sensing performance deteriorated; the material analysis
revealed that the long plasma treatment damaged the surface.
The hysteresis voltage, and drift rate are presented in the
supplement data.

3.3. Multianalyte sensing properties

In addition to pH sensing, the concentration of biologically
relevant ions is a crucial indicator associated with patient heath
conditions. Therefore, various methods for detecting potassium
ion (K+) and sodium ion (Na+) concentrations have been employed
in biomedical research [25]. In addition, K+ and Na+ ion concentra-
tions are crucial indicators of food and wine quality and water
pollution [26].

The K+ ion and Na+ ion sensing properties of the CeO2 mem-
branes were analyzed. We measured the sensitivity of the
as-deposited CeO2 sensing membrane and the membrane treated
with CF4 plasma for 15 s. First, a 5 mM Tris/HCl buffer solution,

of which the pH value was kept at 8.7, was prepared [27]. A micro-
pipette was used to control the concentrations of Na+ and K+ ions in
the range between 10�5 to 10�1 M while 1 M NaCl/Tris–HCl and
1 M KCl/Tris–HCl were injected into the buffer electrolyte.
Subsequently, the pNa sensitivity of the as-deposited CeO2 mem-
brane and the CeO2 membrane treated with plasma for 15 s was
calculated, as shown in Fig. 4(a) and (b). Moreover, the pK sensitiv-
ity of the as-deposited CeO2 membrane and the CeO2 membrane
treated with plasma for 15 s was calculated, as shown in
Fig. 4(c) and (d). The pNa and pK sensitivity values of the
as-deposited CeO2 sensing membrane were 11.68 mV/pNa and
9.78 mV/pK, respectively. After the membrane was treated with
CF4 plasma for 15 s, the pNa and pK sensitivity of the sensing
membrane were increased to 13.83 mV/pNa and 13.03 mV/pK,
respectively. The EIS structure containing nanograins was more
sensitive to Na+ and K+ than that without nanostructures.

A CeO2 nanograin sensing membrane on an EIS structure was
used to detect urine concentrations in solutions. Monitoring urea
concentrations by using biosensors is of great interest in biomedi-
cal applications. The concentration of urea in blood is a crucial
indicator of patient constitution and used in disease evaluation.
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Because enzymatic reactions usually produce ionic species, selec-
tive detection of various chemicals involves using ion-selective
membranes with appropriate enzymes. To stabilize biosensor
properties and lengthen their lifetimes, various methods of
enzyme immobilization, such as physical adsorption [28], entrap-
ment [30], covalent bonding [29], and cross-linking have been
proposed. In this study, we established a process for immobilizing
urease by using covalent bonding methods [31]. The developed
CeO2 nanograin EIS biosensor facilitated investigating the pUrea
sensing performance.

The following is the equation of the urea hydrolysis reaction
catalyzed by urease:

NH2CONH2 þ 3H2O! 2NHþ4 þ OH� þHCO�3

The generated hydrogen ions and ammonium ions can be used
for urea detection. The variation of the pH value caused by an
enzyme-catalyzed reaction can lead to changes in the analytical
output signal of a sensor.

To study the urea sensing properties of the CeO2 nanograin
sensing membrane, the urea sensitivity and linearity were mea-
sured in solutions in which the urea concentration was controlled
in a range between 5 and 40 mM. As shown in Fig. 5(a) and (b), the
as-deposited CeO2 membranes exhibited a urea sensitivity of
1.33 mV/mM and linearity of 89.19%; the CeO2 membranes with
nanostructures after CF4 plasma treatment exhibited a higher sen-
sitivity of 2.30 mV/mM and a higher linearity of 94.58%. The results
indicated that incorporating nanostructures onto the membrane
surface enhanced the urea sensing performance as well as the
capability to sense H+, Na+, and K+.

We used an enzymatic EIS-based membrane similar to that
used in urea detection for glucose detection. Glucose oxidase was
used as the biocomponent, and the biosensor measured the glu-
cose concentration by measuring the changes in pH values caused
by the generation of hydrogen ions with the dissociation of glucose
acid. The chemical formula for the hydrolysis of glucose by glucose
oxidase is as follows:

b-D-GlucoseþO2þH2O���������!glucose oxidase
D-glucose-d-lactoneþH2O2

D-Glucose-d-lactone! D-gluconoateþHþ

Similarly, the procedure of glucose immobilization was
achieved by employing covalent bonding methods. To examine
the glucose sensing properties, the CeO2 sensing membrane on
the EIS structure was used to measure the glucose concentrations
in solutions in which the glucose concentration was controlled in
a range between 2 and 7 mM. As shown in Fig. 5(c) and (d), the
as-deposited CeO2 membranes exhibited a low glucose sensitivity
of 3.46 mV/mM and linearity of 93.76%. After the membrane was
incorporated with nanostructures through plasma treatment, the
sensitivity increased to 5.83 mV/mM and the linearity increased
to 94.58%. The results revealed that nanostructures on the
membrane enhanced the multianalyte sensing performance
because of the increase of the contact area and the surface sites
and suppression of defects. After the nanograins were incorporated
through CF4 plasma treatment, the capability to sense multiple
analytes, namely H+, Na+, K+, urea, and glucose, was improved.

4. Conclusion

In this study, multianalyte CeO2 nanograin EIS biosensors were
fabricated. Nanograin structures formed on top of the CeO2

membrane surface, as shown in FESEM and AFM images. The
formation of nanostructures through CF4 plasma treatment for an
appropriate time of 15 s was associated with enhanced crystalline

structures and stronger chemical binding, as indicated by XRD and
XPS measurements. Furthermore, adding fluorine atoms during the
plasma treatment process might have been related to the forma-
tion of the nanostructures, as indicated by SIMS measurements.
Therefore, incorporating nanostructures can enhance the perfor-
mance of biosensors. A higher sensitivity, higher linearity, lower
hysteresis voltage, and lower drift ratio of pH sensing was
achieved. Moreover, the capability to sense multiple analytes,
namely H+, Na+, K+, urea, and glucose, was achieved by incorporat-
ing nanostructures onto the membrane surface, thereby increasing
the membrane surface contact area and the effective surface sites.
Multianalyte CeO2 nanograin EIS biosensors exhibit potential for
use in future biomedical sensing device applications.
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