349 research outputs found

    The automatic validation tool for PDDL2.1

    Get PDF
    The 3rd International Planning Competition [1] was a great success and a cornerstone to this success was the initial definition of a semantics for the language used in the competition, PDDL2.1. This created a general understanding of the semantics of the domains defined using this language and therefore a general understanding of what constitutes a valid plan. With this consensus on what a valid plan is it was possible to implement an automatic plan validator, VAL. This tool conveys what is a valid plan in PDDL2.1 to anyone developing a planner using this language, as well as providing extra information in a L ATEX report featuring graphs of changing numerical values and a Gantt chart (see figure 2). Actions With Continuous Effects A numerical quantity that can be changed, a function in PDDL, is called a primitive numerical expression (PNE). These PNEs can have continuous change initiated with changes made to the values of their (time) derivatives by durative actions. The effect starts at the beginning of the durative action and ends at the end of the durative action. The introduction of continuous change creates two further complications to the discrete temporal model: 1) Continuous changes can interact with one another, and 2) Invariant conditions may depend on values that are continuously changing. The key extension to the discrete temporal model is that interactin

    The Dynamics of Collaboration Networks and the History of General Relativity, 1925ā€“1970

    Get PDF

    Validating plans with exogenous events

    Get PDF
    We are concerned with the problem of deciding the validity of a complex plan involving interacting continuous activity. In these situations there is a need to model and reason about the continuous processes and events that arise as a consequence of the behaviour of the physical world in which the plan is expected to execute. In this paper we describe how events, which occur as the outcome of uncontrolled physical processes, can be taken into account in determining whether a plan is valid with respect to the domain model. We do not consider plan generation issues in this paper but focus instead on issues in domain modelling and plan validation

    VAL : automatic plan validation, continuous effects and mixed initiative planning using PDDL

    Get PDF
    This paper describes aspects of our plan validation tool, VAL. The tool was initially developed to support the 3rd International Planning Competition, but has subsequently been extended in order to exploit its capabilities in plan validation and development. In particular, the tool has been extended to include advanced features of PDDL2.1 which have proved important in mixed-initiative planning in a space operations project. Amongst these features, treatment of continuous effects is the most significant, with important effects on the semantic interpretation of plans. The tool has also been extended to keep abreast of developments in PDDL, providing critical support to participants and organisers of the 4th IPC

    Sensorless Battery Internal Temperature Estimation using a Kalman Filter with Impedance Measurement

    Full text link
    This study presents a method of estimating battery cell core and surface temperature using a thermal model coupled with electrical impedance measurement, rather than using direct surface temperature measurements. This is advantageous over previous methods of estimating temperature from impedance, which only estimate the average internal temperature. The performance of the method is demonstrated experimentally on a 2.3 Ah lithium-ion iron phosphate cell fitted with surface and core thermocouples for validation. An extended Kalman filter, consisting of a reduced order thermal model coupled with current, voltage and impedance measurements, is shown to accurately predict core and surface temperatures for a current excitation profile based on a vehicle drive cycle. A dual extended Kalman filter (DEKF) based on the same thermal model and impedance measurement input is capable of estimating the convection coefficient at the cell surface when the latter is unknown. The performance of the DEKF using impedance as the measurement input is comparable to an equivalent dual Kalman filter using a conventional surface temperature sensor as measurement input.Comment: 10 pages, 9 figures, accepted for publication in IEEE Transactions on Sustainable Energy, 201

    On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part II. State estimation via impedance-based temperature sensing

    Get PDF
    Impedance-based temperature detection (ITD) is a promising approach for rapid estimation of internal cell temperature based on the correlation between temperature and electrochemical impedance. Previously, ITD was used as part of an Extended Kalman Filter (EKF) state-estimator in conjunction with a thermal model to enable estimation of the 1-D temperature distribution of a cylindrical lithium-ion battery. Here, we extend this method to enable estimation of the 2-D temperature field of a battery with temperature gradients in both the radial and axial directions. An EKF using a parameterised 2-D spectral-Galerkin model with ITD measurement input (the imaginary part of the impedance at 215 Hz) is shown to accurately predict the core temperature and multiple surface temperatures of a 32113 LiFePO4_4 cell, using current excitation profiles based on an Artemis HEV drive cycle. The method is validated experimentally on a cell fitted with a heat sink and asymmetrically cooled via forced air convection. A novel approach to impedance-temperature calibration is also presented, which uses data from a single drive cycle, rather than measurements at multiple uniform cell temperatures as in previous studies. This greatly reduces the time required for calibration, since it overcomes the need for repeated cell thermal equalization.Comment: 11 pages, 8 figures, submitted to the Journal of Power Source

    Circuit Synthesis of Electrochemical Supercapacitor Models

    Full text link
    This paper is concerned with the synthesis of RC electrical circuits from physics-based supercapacitor models describing conservation and diffusion relationships. The proposed synthesis procedure uses model discretisation, linearisation, balanced model order reduction and passive network synthesis to form the circuits. Circuits with different topologies are synthesized from several physical models. This work will give greater understanding to the physical interpretation of electrical circuits and will enable the development of more generalised circuits, since the synthesized impedance functions are generated by considering the physics, not from experimental fitting which may ignore certain dynamics

    Gaussian process regression for forecasting battery state of health

    Full text link
    Accurately predicting the future capacity and remaining useful life of batteries is necessary to ensure reliable system operation and to minimise maintenance costs. The complex nature of battery degradation has meant that mechanistic modelling of capacity fade has thus far remained intractable; however, with the advent of cloud-connected devices, data from cells in various applications is becoming increasingly available, and the feasibility of data-driven methods for battery prognostics is increasing. Here we propose Gaussian process (GP) regression for forecasting battery state of health, and highlight various advantages of GPs over other data-driven and mechanistic approaches. GPs are a type of Bayesian non-parametric method, and hence can model complex systems whilst handling uncertainty in a principled manner. Prior information can be exploited by GPs in a variety of ways: explicit mean functions can be used if the functional form of the underlying degradation model is available, and multiple-output GPs can effectively exploit correlations between data from different cells. We demonstrate the predictive capability of GPs for short-term and long-term (remaining useful life) forecasting on a selection of capacity vs. cycle datasets from lithium-ion cells.Comment: 13 pages, 7 figures, published in the Journal of Power Sources, 201
    • ā€¦
    corecore