15 research outputs found
400 kHz repetition rate THz-TDS with 24 mW of average power driven by a compact industrial Yb-laser
We demonstrate a high average power terahertz time-domain (THZ-TDS)
spectrometer based on optical rectification in the tilted-pulse front geometry
in lithium niobate at room temperature, driven by a commercial, industrial
femtosecond-laser operating with flexible repetition rate between 40 kHz - 400
kHz. The driving laser provides a pulse energy of 41 uJ for all repetition
rates, at a pulse duration of 310 fs, allowing us to explore repetition rate
dependent effects in our TDS. At the maximum repetition rate of 400 kHz, up to
16.5 W of average power are available to drive our THz source, resulting in a
maximum of 24 mW of THz average power with a conversion efficiency of ~ 0.15 %
and electric field strength of several tens of kV/cm. At the other available
lower repetition rates, we show that the pulse strength and bandwidth of our
TDS is unchanged, showing that the THz generation is not affected by thermal
effects in this average power region of several tens of watts. The resulting
combination of high electric field strength with flexible and high repetition
rate is very attractive for spectroscopy, in particular since the system is
driven by an industrial, compact laser without the need for external
compressors or other specialized pulse manipulation
Disentangling lattice and electronic instabilities in the excitonic insulator candidate TaNiSe by nonequilibrium spectroscopy
TaNiSe is an excitonic insulator candidate showing the
semiconductor/semimetal-to-insulator (SI) transition below = 326
K. However, since a structural transition accompanies the SI transition,
deciphering the role of electronic and lattice degrees of freedom in driving
the SI transition has remained controversial. Here, we investigate the
photoexcited nonequilibrium state in TaNiSe using pump-probe Raman and
photoluminescence (PL) spectroscopies. The combined nonequilibrium
spectroscopic measurements of the lattice and electronic states reveal the
presence of a photoexcited metastable state where the insulating gap is
suppressed, but the low-temperature structural distortion is preserved. We
conclude that electron correlations play a vital role in the SI transition of
TaNiSe.Comment: 13 pages, 10 figure
Resonant nonlinear optics in quantum cascade lasers
Les lasers à cascade quantiques (LCQ) sont des sources puissantes de rayonnement térahertz (THz) et moyen infrarouge (MIR). Elles reposent sur une transition intersousbande dans la bande de conduction des nanostructures semiconductrices constituant le LCQ. Ce travail de thèse présente une étude fondamentale de l'optique non-linéaire résonante dans les LCQ. La génération de mélange de fréquences entre un LCQ THz ou MIR et un faisceau proche infrarouge (NIR) est démontrée dans la cavité même du LCQ. Les non-linéarités des puits quantiques constituant la zone active du LCQ sont exaltées grâce à une excitation NIR résonante avec les transitions interbandes et grâce au photon du LCQ résonant avec les transitions intersousbandes de la structure. Ces excitations résonantes entrainent une forte exaltation de la susceptibilité non-linéaire, permettant une interaction efficace sans considération pour l'accord de phase. De précédentes études limitées aux températures cryogéniques, ont mis en évidence le mélange d'ondes résonant entre un LCQ THz basé sur GaAs et un faisceau NIR à 800 nm. Le travail novateur de cette thèse montre que le mélange d'ondes résonant dans les LCQ peut être étendu à la gamme des LCQ MIR et à des excitations de pompe dans le domaine télécom, à température ambiante. De plus, les limites liées à l'absorption sous excitation résonante ont été en partie dépassées, grâce à une géométrie en réflexion. Ce travail a permis une compréhension approfondie des non-linéarités interbandes et intersousbandes résonantes dans les LCQ, ouvrant la voie vers des applications potentielles telles que le décalage de longueurs d'ondes tout-optique pour les télécommunications.Quantum cascade lasers (QCLs) are powerful terahertz (THz) and mid-infrared (MIR) sources. Their emission relies on intersubband transitions i.e. transitions between confined electronic states in the conduction band of these semiconductor nanostructure-based lasers.This PhD thesis presents a fundamental study of resonant nonlinear optics in QCLs. Nonlinear frequency mixing between a THz or MIR QCL photon and a near infrared (NIR) pump has been shown within the QCL cavity. Nonlinearities from the QCL active region, composed of a set of quantum wells, can be enhanced owing to a NIR excitation that is resonance with interband transitions, and with the QCL photon in resonance with intersubband transitions. These resonant excitations permit a strong exaltation of the nonlinear susceptibility, allowing an efficient interaction without considerations of phase matching. Previous studies, limited to cryogenic temperatures, have shown nonlinear frequency mixing between a GaAs based THz QCL and an 800 nm NIR beam.This thesis presents an original work highlighting that resonant nonlinear optics in QCLs can be extended to the MIR, and to telecom range pump excitations, at room temperature. Furthermore, previously limits related to absorption at resonant excitations have also been partially overcome, by proposing a geometry in reflection.As well as proving an in-depth understanding of interband and intersubband nonlinearities in QCLs, this work paves the way to potential applications such as all optical wavelength shifting for telecommunications, and the up-conversion of THz and MIR photons into thetechnologically mature NIR range
Optique non-linéaire résonante dans les lasers à cascade quantique
Quantum cascade lasers (QCLs) are powerful terahertz (THz) and mid-infrared (MIR) sources. Their emission relies on intersubband transitions i.e. transitions between confined electronic states in the conduction band of these semiconductor nanostructure-based lasers.This PhD thesis presents a fundamental study of resonant nonlinear optics in QCLs. Nonlinear frequency mixing between a THz or MIR QCL photon and a near infrared (NIR) pump has been shown within the QCL cavity. Nonlinearities from the QCL active region, composed of a set of quantum wells, can be enhanced owing to a NIR excitation that is resonance with interband transitions, and with the QCL photon in resonance with intersubband transitions. These resonant excitations permit a strong exaltation of the nonlinear susceptibility, allowing an efficient interaction without considerations of phase matching. Previous studies, limited to cryogenic temperatures, have shown nonlinear frequency mixing between a GaAs based THz QCL and an 800 nm NIR beam.This thesis presents an original work highlighting that resonant nonlinear optics in QCLs can be extended to the MIR, and to telecom range pump excitations, at room temperature. Furthermore, previously limits related to absorption at resonant excitations have also been partially overcome, by proposing a geometry in reflection.As well as proving an in-depth understanding of interband and intersubband nonlinearities in QCLs, this work paves the way to potential applications such as all optical wavelength shifting for telecommunications, and the up-conversion of THz and MIR photons into thetechnologically mature NIR range.Les lasers à cascade quantiques (LCQ) sont des sources puissantes de rayonnement térahertz (THz) et moyen infrarouge (MIR). Elles reposent sur une transition intersousbande dans la bande de conduction des nanostructures semiconductrices constituant le LCQ. Ce travail de thèse présente une étude fondamentale de l'optique non-linéaire résonante dans les LCQ. La génération de mélange de fréquences entre un LCQ THz ou MIR et un faisceau proche infrarouge (NIR) est démontrée dans la cavité même du LCQ. Les non-linéarités des puits quantiques constituant la zone active du LCQ sont exaltées grâce à une excitation NIR résonante avec les transitions interbandes et grâce au photon du LCQ résonant avec les transitions intersousbandes de la structure. Ces excitations résonantes entrainent une forte exaltation de la susceptibilité non-linéaire, permettant une interaction efficace sans considération pour l'accord de phase. De précédentes études limitées aux températures cryogéniques, ont mis en évidence le mélange d'ondes résonant entre un LCQ THz basé sur GaAs et un faisceau NIR à 800 nm. Le travail novateur de cette thèse montre que le mélange d'ondes résonant dans les LCQ peut être étendu à la gamme des LCQ MIR et à des excitations de pompe dans le domaine télécom, à température ambiante. De plus, les limites liées à l'absorption sous excitation résonante ont été en partie dépassées, grâce à une géométrie en réflexion. Ce travail a permis une compréhension approfondie des non-linéarités interbandes et intersousbandes résonantes dans les LCQ, ouvrant la voie vers des applications potentielles telles que le décalage de longueurs d'ondes tout-optique pour les télécommunications
La spectroscopie térahertz: électrons et vibrations
Les progrès technologiques ces dernières décennies ont fait croître de façon exponentielle l’utilisation de la spectroscopie TéraHertz. Cette gamme spectrale (1 THz = 1012 Hz) permet de sonder et caractériser les phénomènes physiques à basse énergie, où de nombreux processus élémentaires dans la matière, tels que l’interaction des électrons, des spins, des phonons et les modes de rotation moléculaire, présentent des résonances avec une dynamique (sub)-picoseconde. Cette approche trouve des applications prometteuses en physique, chimie, astronomie et médecine
La supraconductivité à haute température dans les oxydes de cuivre : où en est-on ?
La supraconductivité est un phénomène quantique fascinant, car les effets qu’elle produit sont visibles à l’œil nu. Bien comprise dans les métaux standard (plomb, aluminium, étain...), elle reste largement incomprise dans certains oxydes de cuivre, appelés cuprates.
Cette énigme en cache une autre, celle de la phase « métallique » des cuprates, de laquelle surgit la supraconductivité. Cette phase « métallique » est étonnamment complexe. Elle héberge plusieurs ordres électroniques qui sont interconnectés. À quel type de connections sommes-nous confrontés ? Quels rôles peuvent jouer ces ordres dans l’émergence de la supraconductivité à haute température critique ? Ces questions interpellent les physiciens, car elles annoncent une nouvelle ère de la physique des matériaux, où les ordres de la matière s’entremêlent.
Cet article est divisé en deux parties. La première est une introduction générale à la physique des cuprates, et la seconde est une étude avancée sur les ordres électroniques qui s’y développent en fonction de l’évolution de la topologie de la surface de Fermi
2D THz spectroscopic investigation of ballistic conduction-band electron dynamics in InSb
ISSN:1094-408
Impact ionization in low-band-gap semiconductors driven by ultrafast terahertz excitation: Beyond the ballistic regime
Using two-dimensional THz spectroscopy in combination with numerical models, we investigate the dynamics linked to carrier multiplication caused by high-field THz excitation of the low-gap semiconductor InSb. In addition to previously reported dynamics connected with quasiballistic carrier dynamics, we observe other spectral and temporal features that we attribute to impact ionization for peak fields above 60 kV/cm, which continue up to the maximum investigated peak field of 430 kV/cm. At the highest fields we estimate a carrier multiplication factor greater than 10 due to impact ionization, which is well-reproduced by a numerical simulation of the impact ionization process which we have developed.ISSN:1098-0121ISSN:0163-1829ISSN:1550-235XISSN:0556-2805ISSN:2469-9969ISSN:1095-3795ISSN:2469-995
Solid-state biased coherent detection of ultra-broadband terahertz pulses generated in a spintronic emitter for high repetition rate, low pulse energy lasers
We report the coherent generation and detection of terahertz (THz) pulses featuring a spectral bandwidth in the range of 0.1-9 THz achieved via the use of a high repetition rate (250 kHz), low pulse energy (6.2 µJ) laser system. More specifically, we test and evaluate a solid-state biased coherent detection device in combination with a spintronic emitter. We demonstrate the use of this combination of techniques to measure the ultra-broadband THz frequency optical properties of bulk crystalline materials with time-domain spectroscopy.ISSN:1094-408