45 research outputs found

    Imaging of Streptomyces coelicolor A3(2) with Reduced Autofluorescence Reveals a Novel Stage of FtsZ Localization

    Get PDF
    Imaging of low abundance proteins in time and space by fluorescence microscopy is typically hampered by host-cell autofluorescence. Streptomycetes are an important model system for the study of bacterial development, and undergo multiple synchronous cell division during the sporulation stage. To analyse this phenomenon in detail, fluorescence microscopy, and in particular also the recently published novel live imaging techniques, require optimal signal to noise ratios. Here we describe the development of a novel derivative of Streptomyces coelicolor A3(2) with strongly reduced autofluorescence, allowing the imaging of fluorescently labelled proteins at significantly higher resolution. The enhanced image detail provided novel localization information for the cell division protein FtsZ, demonstrating a new developmental stage where multiple FtsZ foci accumulate at the septal plane. This suggests that multiple foci are sequentially produced, ultimately connecting to form the complete Z ring. The enhanced imaging properties are an important step forward for the confocal and live imaging of less abundant proteins and for the use of lower intensity fluorophores in streptomycetes

    Fluorescence correlation spectroscopy of the binding of nucleotide excision repair protein XPC-hHr23B with DNA substrates

    Get PDF
    The interaction of the nucleotide excision repair (NER) protein dimeric complex XPC-hHR23B, which is implicated in the DNA damage recognition step, with three Cy3.5 labeled 90-bp double-stranded DNA substrates (unmodified, with a central unpaired region, and cholesterol modified) and a 90-mer single-strand DNA was investigated in solution by fluorescence correlation spectroscopy. Autocorrelation functions obtained in the presence of an excess of protein show larger diffusion times (τ d) than for free DNA, indicating the presence of DNA-protein bound complexes. The fraction of DNA bound (θ), as a way to describe the percentage of protein bound to DNA, was directly estimated from FCS data. A significantly stronger binding capability for the cholesterol modified substrate (78% DNA bound) than for other double-stranded DNA substrates was observed, while the lowest affinity was found for the single-stranded DNA (27%). This is in accordance with a damage recognition role of the XPC protein. The similar affinity of XPC for undamaged and 'bubble' DNA sub

    Systems microscopy approaches to understand cancer cell migration and metastasis

    Get PDF
    Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration

    Adaptive optics for confocal laser scanning microscopy with adjustable pinhole

    No full text
    The pinhole plays an important role in confocal laser scanning microscopy (CLSM) for adaptive optics (AO) as well as in imaging, where the size of the pinhole denotes a trade-off between out-of-focus rejection and wavefront distortion. This contribution proposes an AO system for a commercial CLSM with an adjustable square pinhole to cope with such a trade-off. The proposed adjustable pinhole enables to calibrate the AO system and to evaluate the imaging performance. Experimental results with fluorescence beads on the coverslip and at a depth of 40 μm in the human hepatocellular carcinoma cell spheroid demonstrate that the proposed AO system can improve the image quality by the proposed calibration method. The proposed pinhole intensity ratio also indicates the image improvement by the AO correction in intensity as well as resolution.Team Raf Van de Pla

    Molecular underpinnings of enzalutamide resistance

    No full text
    Prostate cancer (PCa) is among the most common adult malignancies, and the second leading cause of cancer-related death in men. As PCa is hormone dependent, blockade of the androgen receptor (AR) signaling is an effective therapeutic strategy for men with advanced metastatic disease. The discovery of enzalutamide, a compound that effectively blocks the AR axis and its clinical application has led to a significant improvement in survival time. However, the effect of enzalutamide is not permanent, and resistance to treatment ultimately leads to development of lethal disease, for which there currently is no cure. This review will focus on the molecular underpinnings of enzalutamide resistance, bridging the gap between the preclinical and clinical research on novel therapeutic strategies for combating this lethal stage of prostate cancer.status: publishe

    Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein

    No full text
    Xeroderma pigmentosum group C (XPC) protein initiates the DNA excision repair of helix-distorting base lesions. To understand how this versatile subunit searches for aberrant sites within the vast background of normal genomic DNA, the real-time redistribution of fluorescent fusion constructs was monitored after high-resolution DNA damage induction. Bidirectional truncation analyses disclosed a surprisingly short recognition hotspot, comprising ∼15% of human XPC, that includes two β-hairpin domains with a preference for non-hydrogen-bonded bases in double-stranded DNA. However, to detect damaged sites in living cells, these DNA-attractive domains depend on the partially DNA-repulsive action of an adjacent β-turn extension that promotes the mobility of XPC molecules searching for lesions. The key function of this dynamic interaction surface is shown by a site-directed charge inversion, which results in increased affinity for native DNA, retarded nuclear mobility and diminished repair efficiency. These studies reveal a two-stage discrimination process, whereby XPC protein first deploys a dynamic sensor interface to rapidly interrogate the double helix, thus forming a transient recognition intermediate before the final installation of a more static repair-initiating complex
    corecore