11 research outputs found
A study of children’s play transition in the forest environment : Focus on the play area and play activity <Research papers>
This study attempts to clarify the process of play transition in the forest and its environs. The play activity of children in kindergarten is constantly evolving alongside changes of the components of play, including activity (action or movement), roles, rules, and the physical environment (Sato, 2004). By observing children who were playing in nursery-rooms, playrooms, and playgrounds, Sato discovered that the scale of communications among children at play is wide. To clarify how play transitions to the forest, an observational study of children playing in the forest near their kindergarten was conducted. The results affirmed three forms of play transition: transition of place, transition of activity, and transition of both place and activity. By analyzing the circumstances of the three forms of play transition, it was found that discoveries and applications of the natural environment are related to the opportunities arising from play transition. Furthermore, the observations of transitions of both place and activity revealed that the transition of place itself is often seen by the children as a type of play activity. This may be related to both the much wider expanse offered by the forest and the ongoing communication between the children
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Study on GIS Visualization in Evaluation of the Human Living Environment in Shenyang-Dalian Urban Agglomeration
Analysis of human living environmental quality of Shenyang-Dalian urban agglomerations has important theoretical and practical significance in rapid development region. A lot of investigations have been carried for Shenyang-Dalian urban agglomerations, including 38 counties. Based on the carrying capacity of resources, natural and socioeconomic environmental factors and regional changes of human living environmental evaluation are analyzed with the application of geographic information systems (GIS) software. By using principal component analysis (PCA) model and natural breaks classification (NBC) method, the evaluation results are divided into five categories. The results show that the human living environmental evaluation (HLEE) indexes of Dalian, Shenyang, and Liaoyang are higher than other counties. Among these counties, the human living environmental evaluation (HLEE) indexes of coastal counties are significantly higher than inland counties. The range of the human living environmental evaluation index in most of the study area is at III, IV, and V levels, accounting for 80.01%. Based on these results, it could illustrate the human living environment is in relatively suitable condition in Shenyang-Dalian urban agglomeration
Dynamic behavior of skyrmion collision: spiral and breath
A magnetic skyrmion is a particle-like topological soliton, which is an ideal candidate for developing high-density storage and logic devices due to its nonvolatility and tunability. In view of the particle motion characteristics of skyrmion, different skyrmions in a material inevitably interact in the form of short-range repulsion and long-range attraction. In this work, the dynamic characteristics of skyrmion collision in a ferromagnetic Co thin film are investigated by using micromagnetic simulations. It is found that the dynamic behavior of skyrmion after collision is highly dependent on the size of the strip, the initial velocity of skyrmion and magnetic damping constant. For the collision of two skyrmions, when the strip width exceeds the critical value, the skyrmions form a pair and rotate counterclockwise in the form of spiral and breath. It is interesting that the rotation and breath of skyrmions keep the same periodicity under the negligible damping, and the frequency increases with the increase of the initial velocity of skyrmion. Further, the collision of a system of three skyrmions reveals that they interact in pairs to form closed periodic trajectories. The results of the present work not only give an insight into the multi-skyrmion dynamics, but also provide guidance for the development of spintronic devices based on multi-skyrmion motion
Liquid-liquid phase separation throws novel insights into treatment strategies for skin cutaneous melanoma
Abstract Background In recent years, there has been growing evidence indicating a relationship between liquid–liquid phase separation (LLPS) and cancer development. However, to date, the clinical significance of LLPS in skin cutaneous melanoma (SKCM, hereafter referred to as melanoma) remains to be elucidated. In the current study, the impact of LLPS-related genes on melanoma prognosis has been explored. Methods LLPS-related genes were retrieved from the DrLLPS database. The prognostic feature for LLPS in melanoma was developed in The Cancer Genome Atlas (TCGA) dataset and verified in the GSE65904 cohort. Based on risk scores, melanoma patients were categorized into high- and low-risk groups. Thereafter, the differences in clinicopathological correlation, functional enrichment, immune landscape, tumor mutational burden, and impact of immunotherapy between the two groups were investigated. Finally, the role of key gene TROAP in melanoma was validated by in vitro and in vivo experiments. Results The LLPS-related gene signature was developed based on MLKL, PARVA, PKP1, PSME1, RNF114, and TROAP. The risk score was a crucial independent prognostic factor for melanoma and patients with high-risk scores were related to a worse prognosis. Approximately, all immune-relevant characteristics, such as immune cell infiltration and immune scores, were extremely evident in patients with low-risk scores. The findings from the in vitro and in vivo experiments indicated that the viability, proliferation, and invasion ability of melanoma cells were drastically decreased after the knockdown of TROAP. Conclusion Our gene signature can independently predict the survival of melanoma patients. It provides a basis for the exploration of the relationship between LLPS and melanoma and can offer a fresh perspective on the clinical diagnosis and treatment of the disease
Short-Haul Intermodal Service: Can Rail Compete with Truck?
BACKGROUND: Nearly one-quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North-East Asia, by 1981 only seven individuals from two breeding pairs remained in the wild. The recovering crested ibis populations thus provide an excellent example for conservation genomics since every individual bird has been recruited for genomic and demographic studies. RESULTS: Using high-quality genome sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify that genetic inbreeding and loss-of-function genes in the crested ibis may all constitute genetic susceptibility to other factors including long-term climate change, over-hunting, and agrochemical overuse. We also establish a genome-wide DNA identification platform for molecular breeding and conservation practices, to facilitate sustainable recovery of endangered species. CONCLUSIONS: These findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts