10 research outputs found

    THE MATURATION OF WESTERN EQUINE ENCEPHALOMYELITIS VIRUS AND ITS RELEASE FROM CHICK EMBRYO CELLS IN SUSPENSION

    Get PDF
    Experiments are presented in which the plaque assay technique was used to study the intracellular appearance and release of Western equine encephalomyelitis virus in suspensions of infected chick embryo fibroblasts. No intracellular virus could be found during the 1st hour after adsorption in spite of the fact that more than 1014 cells per ml. proved to be infected. This is taken to indicate that the infecting particle loses its infectivity upon entering a susceptible cell. The first progeny virus was detectable in the cells between 1 and 2 hours after infection, and it increased in amount exponentially during the following 3 hours. The released virus as measured in the supernatant fluid increased at the same rate as the intracellular virus but exceeded it in amount by a factor of about twenty at all times during the period of exponential increase. More than 100 particles were spontaneously released from each cell, by the end of the period of exponential increase, yet the maximum number of intracellular infective particles at any instant during this period was never more than an average of from 4 to 10 per cell. Calculations based on these findings indicate that, on the average, a virus particle is released from the cell within 1 minute after it gains the property of infectiousness

    Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1

    Get PDF
    Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis

    Plakoglobin-dependent regulation of keratinocyte apoptosis by Rnd3

    No full text
    The human epidermis is a self-renewing, stratified epithelial tissue that provides the protective function of the skin. The principal cell type within the epidermis is the keratinocyte and normal function of the epidermis requires that keratinocyte proliferation, differentiation and cell death be carefully controlled. There is clear evidence that signalling through adhesion receptors such as integrins and cadherins plays a key role in regulating epidermal function. Previous work has shown that Rho family GTPases regulate cadherin- and integrin-based adhesion structures and hence epidermal function. In this study we show that a member of this family - Rnd3 - regulates desmosomal cell-cell adhesion in that loss of Rnd3 expression leads to an increase in desmosomes at sites of cell-cell adhesion and altered colony morphology. Loss of Rnd3 expression is also associated with resistance to cisplatin-mediated apoptosis in keratinocytes and this resistance is mediated via the desmosomal protein plakoglobin. We propose a novel plakoglobin-dependent role for Rnd3 in the regulation of keratinocyte cell death.</jats:p

    Runaway electron beam control

    Get PDF
    Post-disruption runaway electron (RE) beams in tokamaks with large current can cause deep melting of the vessel and are one of the major concerns for ITER operations. Consequently, a considerable effort is provided by the scientific community in order to test RE mitigation strategies. We present an overview of the results obtained at FTU and TCV controlling the current and position of RE beams to improve safety and repeatability of mitigation studies such as massive gas (MGI) and shattered pellet injections (SPI). We show that the proposed RE beam controller (REB-C) implemented at FTU and TCV is effective and that current reduction of the beam can be performed via the central solenoid reducing the energy of REs, providing an alternative/parallel mitigation strategy to MGI/SPI. Experimental results show that, meanwhile deuterium pellets injected on a fully formed RE beam are ablated but do not improve RE energy dissipation rate, heavy metals injected by a laser blow off system on low-density flat-top discharges with a high level of RE seeding seem to induce disruptions expelling REs. Instabilities during the RE beam plateau phase have shown to enhance losses of REs, expelled from the beam core. Then, with the aim of triggering instabilities to increase RE losses, an oscillating loop voltage has been tested on RE beam plateau phase at TCV revealing, for the first time, what seems to be a full conversion from runaway to ohmic current. We finally report progresses in the design of control strategies at JET in view of the incoming SPI mitigation experiments

    Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model

    Get PDF
    The RAPTOR code is a control-oriented core plasma profile simulator with various applications in control design and verification, discharge optimization and real-time plasma simulation. To date, RAPTOR was capable of simulating the evolution of poloidal flux and electron temperature using empirical transport models, and required the user to input assumptions on the other profiles and plasma parameters. We present an extension of the code to simulate the temperature evolution of both ions and electrons, as well as the particle density transport. A proof-of-principle neural-network emulation of the quasilinear gyrokinetic QuaLiKiz transport model is coupled to RAPTOR for the calculation of first-principle-based heat and particle turbulent transport. These extended capabilities are demonstrated in a simulation of a JET discharge. The multi-channel simulation requires ∼0.2 s to simulate 1 second of a JET plasma, corresponding to ∼20 energy confinement times, while predicting experimental profiles within the limits of the transport model. The transport model requires no external inputs except for the boundary condition at the top of the H-mode pedestal. This marks the first time that simultaneous, accurate predictions of Te, Tiand nehave been obtained using a first-principle-based transport code that can run in faster-than-real-time for present-day tokamaks

    Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks - A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET

    No full text
    This paper presents a survey of the experiments on runaway electrons (RE) carried out recently in frames of EUROFusion Consortium in different tokamaks: COMPASS, ASDEX-Upgrade, TCV and JET. Massive gas injection (MGI) has been used in different scenarios for RE generation in small and medium-sized tokamaks to elaborate the most efficient and reliable ones for future RE experiments. New data on RE generated at disruptions in COMPASS and ASDEX-Upgrade was collected and added to the JET database. Different accessible parameters of disruptions, such as current quench rate, conversion rate of plasma current into runaways, etc have been analysed for each tokamak and compared to JET data. It was shown, that tokamaks with larger geometrical sizes provide the wider limits for spatial and temporal variation of plasma parameters during disruptions, thus extending the parameter space for RE generation. The second part of experiments was dedicated to study of RE generation in stationary discharges in COMPASS, TCV and JET. Injection of Ne/Ar have been used to mock-up the JET MGI runaway suppression experiments. Secondary RE avalanching was identified and quantified for the first time in the TCV tokamak in RE generating discharges after massive Ne injection. Simulations of the primary RE generation and secondary avalanching dynamics in stationary discharges has demonstrated that RE current fraction created via avalanching could achieve up to 70-75% of the total plasma current in TCV. Relaxations which are reminiscent the phenomena associated to the kinetic instability driven by RE have been detected in RE discharges in TCV. Macroscopic parameters of RE dominating discharges in TCV before and after onset of the instability fit well to the empirical instability criterion, which was established in the early tokamaks and examined by results of recent numerical simulations
    corecore