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Abstract
Post-disruption runaway electron (RE) beams in tokamaks with large current can cause deep
melting of the vessel and are one of the major concerns for ITER operations. Consequently, a
considerable effort is provided by the scientific community in order to test RE mitigation
strategies. We present an overview of the results obtained at FTU and TCV controlling the
current and position of RE beams to improve safety and repeatability of mitigation studies such
as massive gas (MGI) and shattered pellet injections (SPI). We show that the proposed RE beam
controller (REB-C) implemented at FTU and TCV is effective and that current reduction of the
beam can be performed via the central solenoid reducing the energy of REs, providing an
alternative/parallel mitigation strategy to MGI/SPI. Experimental results show that, meanwhile
deuterium pellets injected on a fully formed RE beam are ablated but do not improve RE energy
dissipation rate, heavy metals injected by a laser blow off system on low-density flat-top
discharges with a high level of RE seeding seem to induce disruptions expelling REs.
Instabilities during the RE beam plateau phase have shown to enhance losses of REs, expelled
from the beam core. Then, with the aim of triggering instabilities to increase RE losses, an
oscillating loop voltage has been tested on RE beam plateau phase at TCV revealing, for the first
time, what seems to be a full conversion from runaway to ohmic current. We finally report
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progresses in the design of control strategies at JET in view of the incoming SPI mitigation
experiments.

Keywords: runaways, plasma control system, magnetic confinement

(Some figures may appear in colour only in the online journal)

1. Introduction

Post-disruption runaway electron (RE) beams mitigation is
one of the main concerns for ITER operations where the RE
beam could reach up to 12MA, mainly due to secondary
(avalanche) generation mechanisms [1], and even if the RE
beam is confined and eventually lost (final loss) with current
larger than 2 MA, the damages to the vessel can be intolerable
for ITER [2].

Joint efforts among researchers all over the world aim at
providing mitigation strategies in order to reduce the risk
associated with RE beams impacts. The main solution seems
to inject heavy particles (Ar/Ne) before or during the current
quench (CQ) that anticipate the post-disruption RE beam
formation to limit runaway formation and increase energy
dissipation by particle drug and radiation. However, the
quantity of injected particles and its assimilation has to induce
CQs lasting more than 50 ms and less than 150 ms to limit
electro-magnetic loads [2]. This operational window seems
quite difficult to be obtained; meanwhile, the effectiveness of
the secondary (on the fully formed RE beam) MGI injection
versus SPI (shattered pellet injection) is under study [3–7]. On
the other hand, JET experiments show a reduced RE forma-
tion due to the small electrical field at CQ (slower CQ) and
plasma contamination thanks to the ITER-like wall [8].

To be able to test mitigation techniques on RE beams,
control algorithms have been developed at Tore-Supra [9],
DIII-D [5], FTU [10], TCV [11], ASDEX [3] and COMPASS
[4]. Indeed, stabilization of the RE beam position and its
current is mandatory to have reliable, reproducible and safe
experiments. Furthermore, current control to ramp-down the
RE beam current can be combined with MGI/SPI dissipation
strategies to provide redundancy and backup. The main lim-
itations of RE beam position control for ITER are the poloidal
coils and current amplifiers limits: DINA simulations have
shown that RE beam control should be effective for CQ drops
smaller than 4 MA (1/3 of the initial ohmic current). In
section 2 we describe the control architecture and the exper-
imental results obtained at FTU and TCV whereas in
section 4, are illustrated the proposed strategies to improve
the RE beam stabilization at JET for the next SPI campaign.

2. Control strategy

We designed control tools to improve RE beam stabilization
and ramp-down its current with an architecture conceived to
be plugged onto the standard control scheme, i.e. the one that
is considered for thermal plasmas. This modular approach
allows isolated validation of the new control tools minimizing
changes in the code of the standard feedback. The structure of

the RE beam controller (REB-C) is shown in figure 1. The
standard (thermal plasmas) control scheme is depicted in
black: C is the regulator used to stabilize the plasma position
and current, in many facilities are PID controllers, whereas
the block named PLANT represents the dynamics of the
electrical circuitry of the active coils, their current amplifiers
and the plasma/RE beam dynamics. The block PLANT
represents also the sensors (e.g. Mirnov coils) which are
involved in the reconstruction of the signals used for plasma
position and current stabilization. As discussed in [10], the
standard routines that use magnetic measurements to recon-
struct the plasma boundaries and its geometric center can be
also considered in case of RE beams. Nevertheless, RE beam
dynamics are quite different from thermal plasmas and require
dedicated control algorithms to improve its confinement as
discussed in [12].

The new tools we propose can be identified as three
boxes added to the standard control system: the detector of
the CQ and RE plateau onset (block D in figure 1), the block
RRE that modifies the standard (thermal plasmas) current
reference and the block CRE that modifies the desired radial
beam center and the output of the controller C. All the
aforementioned tools are discussed in detail next.

2.1. Current Quench and RE plateau detector

It is necessary to know when the RE beam is formed in order
to start a controlled RE beam current ramp-down and intro-
duce new control action by CRE. To detect the CQ and the
following RE beam formation, i.e. the RE plateau onset, we
refer to the discrete time filter and the logics proposed in [13]
processing only the Ip signal. The filter evaluate an approx-
imate derivative of Ip that is used to detect fast Ip drops
associated to CQs and then the (possible) formation of pla-
teaus characterized by slower current decay. The code
implementing the detector is represented by the block D of
figure 1 and once the plateau onset is found, the blocks RRE

and CRE are then activated to trigger a position controlled
current ramp-down. For safety reasons, the ramp-down is also
triggered in case the level of hard-x-rays (HXR) overpass a
threshold which is associated to high level of interactions
between the REs and the vessel. The latter type of ramp-down
is called soft-stop.

2.2. Current ramp-down

The RE beam current ramp-down is obtained once the block
RRE is activated by block D, and changes the current reference
signal. The current reference is changed as follows: it is
initially maintained at the pre-disruption value for a selectable
interval of time (10–30 ms) after the plateau onset, then it

2
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quickly (exponentially) converges to a straight line that goes
from the post-disruption (plateau onset) current down to
zero with a selectable rate. The current reference is initially
(10–30 ms) maintained constant so that the Ip control system
(part of the block C in figure 1) tries to sustain the current
and consequently reduce the plasma/beam radial displace-
ment toward the high-field side (HFS). If the current it is
not sustained initially, due to the increased drag caused by
impurities at the disruption (CQ), the larger current rate of
loss after the CQ induces faster inward (HFS) movement of
the plasma/beam column due to unbalanced magnetic forces
exerted by PF coils. There is a secondary effect that limits
the inner displacement of REs: maintaining constant the
current reference a large Ip tracking error translates into an
increased flux, produced by mean of the ohmic circuit, and
such flux is quickly absorbed by REs that increase their
energy orbiting consequently with an outer radial center, i.e.
REs orbit center moves toward the low-field side (LFS),
counteracting the inward shift due to CQ. For the same
reason, to avoid too large radial displacements of REs, no
more than 30 ms after the plateau onset the current reference
is decreased down to the Ip at the plateau onset (post-
disruption value), and then ramped down linearly. During
the linear ramp-down, the reference is modified in order to
limit the loop voltage (Vloop), measured on-line, below a
given predefined threshold. Indeed, experimental analysis
have revealed that during the RE beam current ramp-down
the higher electrical field the larger MHD modes [4, 11].
Then, the block RRE shifts the desired trajectory toward the
measured value in order to reduce the Ip tracking error, and
then the flux provided by the central solenoid, when Vloop

is above a predefined threshold15. The shift is obtained
changing the parameter c(t) of the current reference

= + - -( ) ( ( ) ∣ ∣( ) ( ))I I c t I t t t tsign max 0,p p p,ref ,pl ,pl end end pl ,
where Ip,pl and tpl are the current and the time at which the
ramp-down is triggered, i.e. when a plateau onset is detected
by block D or when a soft-stop is request (see section 2.1).
The time tend is such that −Ip,pl/(tend − tpl) equals the desired
ramp-down rate. The value of the parameter c(t) is evaluated
on-line to reduce the current error Ip−Ip,ref, and then

lowering the Vloop(t), as follows:


=

- >⎧⎨⎩
( )

˙
( ) ( ) ( ( ) ∣ ∣ )

1

c
k I I I V I S I Isign if sign , ,

0 otherwise,
p p p loop p v p p,ref ,pl ,pl ,min

that is such that the Ip,ref converges exponentially, with a time
constant k>0 chosen larger than the time constant of the
ohmic circuitry, to the actual Ip in case the measured Vloop

would provide too much energy to REs (i.e. when Vloop

overpass the selected threshold Sv). It has to be noted that the
measured Vloop does not depend only on the flux provided by
the central solenoid but also on the current decay, MHD
activity and drag (Zeff) but the algorithm, at the present stage,
does not take these elements into account.

2.3. Position control

The position control block CRE in figure 1 has been designed to
improve stabilization of the RE beam. The magnetic mea-
surements are currently used in different tokamaks (DIII-D,
FTU, TCV, ASDEX, JET, KSTAR) to estimate the beam
position: experiments at DIII-D analyzing soft-X camera and
the scanning CO2–CO interferometer at FTU have shown that
such approximation is valid [10, 14]. We intend to provide a
refinement of the standard stabilization system in C to improve
tracking performances and, consequently, safety for RE beam
experiments. The block CRE input the position tracking error as
the controller C. CRE redefines the desired radial position of the
beam center and modifies the request of current (FTU) or
voltage (TCV) to the PF coils requested by C. The reference of
the radial coordinate of the beam center is moved toward the
HFS, as suggested in [10, 15], to reduce RE-vessel interactions:
the radial center reference is reduced linearly to a desired value
(about 15% smaller than the standard one). Indeed, with
respect to standard plasmas, the radial center of the REs orbits
is shifted toward the LFS due to their higher energy [15].

2.3.1. Fast hybrid controller. To improve fast displacements
recovery an ad-hoc tool has been introduced exploiting the
framework of hybrid systems [16–18]. We provide a quick
overview of the fast controller: let e be the (vertical/radial
center) tracking error and = ( ˙ )E e e e, , ¨ the state of the
position error system. The new controller acts generating
control signal as ramps whenever E enters into an unsafe
region Ω in order to steer E back into the safe one. Vertical
and radial displacements of the RE beam are considered to be
decoupled and then two independent fast controllers acting
on the PF coils have been designed.

Define the set Ω as

 s s
s

W= Î >  > 
>  >
{ ∣ ∣ ∣ ˙∣ ˙

( ) } ( )
E e e ee

e e
:

0 sign ¨ , 2

3
1 2

3

for given parameters (σ1, σ2, σ3) and where the time
derivatives of the tracking error signal e are evaluated on-
line via specific filters [13]. Although it is not immediate, the
set Ω identifies a portion of the state space in which
trajectories are pointing far from the origin, i.e. the tracking
error is going to increase immediately after E enters in Ω. As

Figure 1. The REB-C scheme: the standard control feedback with the
regulator C is augmented with the block CRE that improves RE beam
stabilization, the block RRE that changes the current reference to
obtain a ramp-down and the block D that detects a formed RE beam.

15 The loop voltage threshold has been set equal to 3 V for FTU and 1.85 V
for TCV.
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an example, consider the condition >˙ee 0 in (2): if e and ė
are positive then e will (instantaneously) further increase, or if
both e and ė are negative then e will (instantaneously) further
decrease. The output uf(t) of the fast controller is generated
via the following equations (hybrid system):

= - - Î W( ) ( ( )) ( )( ) ( )u t e t k t t t Esign , if , 3f r k

= - Ï W˙ ( ) ( ) ( )u t k u t E, if , 4f d f

where tk is the most recent time at which E(t) entered into Ω. The
fast controller has been designed initially to cope with elongated
unstable discharge at FTU [19] due to the phase lag introduced
by the current amplifier, not designed to deal with vertical
instability since FTU is a tokamak with circular plasmas. Then,
to manage this phase lag in the control loop, the fast controller
(3)–(4) exploits the second derivative ë to retrieve preemptive
information on the effect of the ramp steering E back into the
safe region: this information is contained in the constraint

s>( )e esign ¨ 3 of (2). Indeed, selecting for example σ3 negative,
the ramp is switched off exponentially by (4) if sign ( )e ë is
negative, meaning that the error derivative is going to decrease
and, due to the phase lag, E(t) might soon leave Ω and the
control action needs to be reduced to avoid instability: phase lag
usually introduce unstable oscillations. The origin of the overall
closed-loop system can be proved to be asymptotically stable
assuming a linear transfer function of the plant, with parameters
within a bounded region, recurring to the stability analysis tools
for hybrid systems [16]. The slope of the ramp kr(t) is changed
adaptively by an heuristic: it is increased when E(t) enters into Ω
on the same ‘direction’ (sign of ˙ee) for a certain number of times
within a predefined interval of time, whereas kr(t) is decreased
when oscillations are detected since they might be caused by
high values of kr. Furthermore, to avoid fast uf oscillations on Ω

boundaries (chattering), an hysteresis is implemented.
This control action does not excite fast plant dynamics

unlike bang-bang type controllers and its parameters have

been experimentally tuned very quickly thanks to the adaptive
gain kr (3 shots for FTU and 1 for TCV). The fast controller
did not only improve the RE beam control but also vertical
stability for FTU elongated plasma discharges [19].

The performances of the new control tools are shown in
figure 2. The left column shows pictures from FTU shots:
#41918 is with an advanced version of REB-C also having
the fast controller that was missing in #41577. The middle
column shows TCV pulses with REB-C #61503 and without
#61501: the standard controller can in about 50% of the shots
maintain the RE beams, whereas REB-C has never shown a
vertical instability like in #61501. Furthermore, the stabiliza-
tion of the shot #61503 with the REB-C controller is harder
since a square wave is added to the Ip reference to induce
electrical field oscillations: such current oscillation increases
the MHD activity, enhances RE losses16 and deteriorates
radial displacements. Nevertheless REB-C outperforms the
standard controller. The right column depicts an RE beam
desired vertical displacement of about 11 cm with satisfactory
tracking error eh(t)=zgeomref−zgeom(t). The signal zgeom
is the vertical coordinate of the RE beam center provided by
LIUQE equilibrium reconstruction code [20]. In figure 2, the
time traces in the Ip plot are the plasma/RE beam current
(solid) and the current reference Ip,ref (dashed). For FTU, we
show the counts (multiply by the factor 1E14) of the fission
chamber (FC) camera sensible to photo-fissions induced by
REs with energy higher than 6MeV hitting the vessel,
whereas for TCV, the HXR counts of the photo multiplier
(PMTX) tube measuring emissions of runaways (synchrotron
and collisions) are shown. At the bottom plots of figure 2, for
FTU we show the estimated external radius of the beam
center Rext (solid) and the desired one (dashed). For TCV, the
vertical tracking error eh and the vertical coordinates of the

Figure 2. The REB-C performances: (left) FTU controlled ramp-down with (#41918) and without (#41577) the fast controller. (center) TCV
controlled ramp-down with (#61503, also with current oscillations) and without (#61501) the REB-C that is used to obtain (right) a large
RE beam vertical displacement of about 11 cm, shot #61096.

16 Similar results where electrical field oscillations have induced RE losses
have been discussed in [21] and [4].
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beam center (zgeom) are shown. It has to be noted that the
loss of RE beams at TCV, when the REB-C is used, is due to
a delay introduced by the PF current amplifiers at zero
crossing: we are studying possible solutions to this issue.

The RE energy suppression during the current ramp-down
is confirmed by the RE and image spectroscopy (REIS) [10], a
diagnostic that provides the spectra of the synchrotron radiation
emitted by in-flight REs: after the plateau onset the RE energy
distribution peak, which is correlated with the value of the
coefficient a2 of a second order polynomial + +a x a x a2

2
1 0

fitting the measured spectra, moves toward lower energies,
according also to other diagnostics such as HXR, FC, proving
that RE energy is decreased during the ramp-down.

2.4. Final loss

RE beams can provoke potential damage at the final loss due to
magnetic to kinetic energy conversion, as discussed in [22–24].
Analysis on FTU discharges have revealed, during RE current
ramp-down, anomalous fast radial inward movements of the
RE beam associated to partial/small RE loss against the vessel,
typically within 150–180 ms after the onset of the ramp-down
(compared to the external radius of the beam in figure 2
approximately at 0.6s). At TCV two RE beam ramp-down
adding electrical field oscillations (square waves added to the Ip
reference) have shown an extremely interesting phenomenon:
before the usual RE beam final loss the REs seem to disappear
whereas the current remains almost unchanged, as if an ohmic
plasma with no runaways forms, with a reduced Li and a
sudden inner radial displacement. The inner radial displace-
ment when the REs are loss at TCV can be correlated, as in
FTU, to the sudden loss of REs energy. To give a possible
explanation to such findings we can refer to the hysteresis that
has been found to affect the REs generation/suppression
[25–27]. In the right plots of figure 3, before the pulses end,

runaways are lost completely but there is only a 15% current
drop: the electrical field oscillations might have induced the
(sudden) hysteresis transition across the unstable equilibria that
divide the ohmic from the runaway region in the energy state
space representation. Temperature measurements exclude the
possibility that a thermal plasma would coexist with REs
before their loss. Further experiments have been conducted
with larger Vloop oscillations with the aim of obtaining similar
preemptive loss of REs without current drops, i.e. a possible
formation of ohmic plasma from a RE beam. However, in these
new experiments, one of which is the shot #661502 in
figure 2, the plasma conditions changed and the mean electrical
field during the ramp-down resulted in being slightly positive
(higher drag due to larger amount of impurities injected by the
new disruption mitigation valve system), possibly inhibiting a
gradual REs energy reduction process. Further experiments are
planned to investigate this important feature that would pos-
sibly allow to reduce the issue of the RE energy conversion
into kinetic one at the final loss.

3. Deuterium pellets and laser blow-off injections
on FTU

The REB-C has been used to stabilize the RE beam position
and perform experiments on deuterium pellets and laser blow-
off injections into flat-top plasma current with REs and post-
disruption RE beams, respectively. Indeed, as mentioned in
the introduction, the RE beam position and current control
system can the be coupled with other mitigation techniques or
can be used to asses their effectiveness, providing exper-
imental repeatability and improving safety.

The FTU facility is provided with a horizontal pellet
injector that can launch, triggered by a TTL signal of the

Figure 3. Right: an FTU RE beam current ramp-down showing that the coefficient a2, fitting the REs synchrotron radiation spectra, decreases
after current quench proving that RE energy is reduced, also coherently to HXR. Left: two shots with oscillating loop voltages during ramp-
down showing complete loss/conversion of REs before the final current loss.
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control system, up to two ‘small’ deuterium pellets of about
1×1020 atoms at a speed of 1200 m s−1 and two ‘large’
pellets with 2×1020 atoms at 1000 m s−1. The time to reach
the core of a normal plasma is about 0.3 ms and is usually
used for fueling increasing the density up to 8×1020 with
Ip=1.2 MA (8T) [28]. To have an idea of the amount of
atoms injected with respect to the plasma volume, a large
pellet if injected on a 360 kA (5T) discharge induces a density
limit disruption.

Fast H–alpha detectors, Mirnov coils (MHD sensors), a
fast (65 μs) CO–CO2 scanning interferometer and X–VUV
spectrometer Schwob are used to analyze the discharges.

The main results of D2 pellets and Laser Blow-Off (LBO)
[29] injections are the following:

• Flat-top: a small pellet yields ne increase and with almost
the same probability (50%) can lead to RE total expulsion
(MHD driven instabilities) or RE increase (due to the
increase of the electrical field). LBO can cause interesting
RE expulsion, as for pellets, but do not increase the RE
number as shown in the right plots of figure 4. The
amplitude of the induced MHD activity expelling the REs
from the core seem to be proportional to the ionization of
the impurity detected by the Schowb spectrometer as
shown in the time trace of the second plot (right column)
representing the evolution of the Fe XXIII (135.80 A) line
brightness normalized with respect to ne, whereas the time
traces NEU213 are γ rays and neutrons counts, measured
by a scintillator, and provide qualitatively the number of
in-flight REs. It is evident that the drops of NEU213 few
milliseconds after the LBO injection at time 0.3 s,
revealing that REs are lost, is correlated with the level of
ionized atoms (B(Fe)/ne in the second plot) and radiated

power (Prad). It is clear indeed that the more Fe atoms are
ionized, the more they interact with the plasma triggering
an instability expelling REs. It has to be noted that, for the
shot whose signals are depicted in red, after the REs
expulsion the other REs are generated given that was a
low density discharge.

• RE beam: pellets induce a further decrease of the
temperature, which is already low, so that recombination
takes place and electron density drops. Only in one of the
discharges did we record a large density increase when
the pellets have been injected far from the plateau onset:
the background plasma might have gained energy, then
temperature, during the ramp-down. LBO does not
provide any effect due to the low temperature of the
beam (no ionization). Instabilities expelling REs have
been recorded during the ramp-down as shown by MHD
and Cerenkov probe spikes clearly visible in the right
plots of figure 4. Fan instability [30] sets in after 0.45 s
and has been recognized by marks on ECE emission,
whereas the instability right after the CQ up to 0.45 s is
different. Recent studies might suggest that such losses
are indication of whistler waves [31].

4. JET control tools

Past experiments on JET facilities have shown that selecting
specific initial position (z=0.01, r=0.4) of a limiter low
density circular plasma, the standard control system allowed
to maintain a beam up to 200 ms as shown in figure 5.
Nevertheless, large vertical excursions leading to premature
loss of the RE beam have been observed. In view of the next

Figure 4. Left: D2 pellets and LBO injections on a post-disruption RE beam showing that the density drops at pellets injection while
instabilities sets in after the plateau onset expelling REs out of the core as detected by the Cherenkov probes. Right: LBO injection of iron on
flat-top plasmas with in-flight REs causes small disruptions expelling REs, as revealed by the drops of NEU213, proportionally to the Iron
ionization (B(Fe)/ne).
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shattered pellet injections (SPI) experiments to study dis-
sipation effects on REs energy, it is mandatory to have an
improved and reliable RE beam confinement in order to have
experiments repeatability. Analysis on RE beam losses
revealed that the controller VS5, designed to stabilize the fast
vertical plasma displacements (VDE), does not react to the
slow drift which characterizes the movements of the RE beam
plateau phase and leads to premature losses of the beam, as
shown by the vertical center of the beam Zp in figure 5.
Indeed, the velocity observer that estimates VDEs acts as
an high-pass filter and then slow drifts are filtered out.
Consequently, the vertical velocity feedback loop feed with
the observer output does not react to slow drift. It comes
naturally then, since changes to the code of the position
controller have not begin allowed, to modify the observer to
make it sensible to slow drifts, without loosing the capability
of the standard one to sense fast movements. Such an
observer can be designed by properly selecting the parameters
of the linear difference equation (linear time invariant system)
already implemented in the real-time code: we need only to
provide different configuration parameters to design the new
observer and the real-time control code is not changed.
However, we desire to use the new observer only in case of
RE beams plateau, then we implemented the CQ and plateau
detector algorithm in order to switch from the standard to the
new observer once the CQ is detected.

Apart of the new observer design, it is possible to acti-
vate also the the JET shape controller (SC) [32] at the plateau
onset, that was switched-off in the past experiments. The SC
might help in maintaining the vertical/radial stability of the
beam since it can be configured to stabilize in closed loop the
vertical Zp and radial Rp coordinates of the beam center
(estimated by equilibrium code). However, the response time

of the SC in the feedback configuration is too slow for the RE
beams. To provide faster responsiveness of the SC a possible
solution consists into providing directly feed-forward currents
of the PF coils used by the SC (P4 imbalance coils), i.e. the
SC tries to impose directly the desired current on the PF coils
instead of closing the feedback on the beam position. To
provide a possible strategy for the selection of such pre-
programmed coils current, a new tool similar to the
rapidly-exploring random tree (RRT) [33] used in robotics
has been conceived. Starting from experimental data, a
graph representing plant transitions induced by given control
actions is constructed and updated at each new experiment.
The nodes of the graph are the state of the plant, the vector
( ˙ )Z Z Z, , ¨p p p in this case, and the arches that allows to pass
from node to node are the experimental control inputs (PF
coils currents). At each node an LTI system is identified using
standard identification tools. The control problem is then
recast into an optimization path planning problem and a
number of optimization tools can be used. Then, shot by shot,
the system will suggest to the RDOs the pre-programmed
currents that could improve the RE beam stabilization. This
approach provides feed-forward signals and it is not robust by
definition, although faster than the SC in closed loop and
might steel provide help if experiments are repeatable. Again,
this solution has been proposed to bypass real-time control
code changes.

5. Conclusion

The new control tools tested at FTU and TCV have shown
that the RE beam position can be stabilized and its current
ramped-down. RE beam confinement improved with the the
installation of the REB-C at FTU and TCV, as shown by
radial and vertical position of the RE beam center in figure 2.
Given that the Hybrid Fast Controller is model-free, it is
intrinsically robust and the portability from FTU to TCV
paves the way to ITER implementation. It might be possible
to further improve the REB-C designing a dedicated Ip con-
troller, without relying on the standard one, possibly includ-
ing real-time measurements of Zeff to better regulate the flux
absorbed by REs. Concerning the current ramp-down, it has
been confirmed that controllability of the RE beam is
dependent on the Ip decaying rate: mitigation techniques
should be compliant with the rate at which controllability is
lost. Note that if fast RE current reduction is requested, due to
limitations on the current rate of the central solenoid, a
combined action of MGI/SPI is necessary. The other way
around to slow the decaying rate, almost no flux has to be
provided by the central solenoid and controllability improves:
current on the PF coils has to be changed to a lower rate
(assuming no VDEs). At TCV, large RE beam vertical dis-
placements have been successfully achieved and a new
interesting phenomenon has been observed: REs are suddenly
replaced by ohmic plasma, opening a possible new way to
treat the final loss issue. On FTU, thanks to the RE beam
control system, repeatable deuterium pellets experiments have
been performed showing that D pellets do not increase REs

Figure 5. JET past experiments: the standard control system has
shown to be able to confine the RE beam up to 200 ms (#92459)
although large vertical displacements usually lead to premature RE
beam losses.
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dissipation rate (RE beams not formed using MGI), and large
instabilities expelling REs have been observed. LBO experi-
ments have shown that small disruptions leading to important
RE loss can be achieved using iron on flat-top low density
discharges. This might suggest to use LBO before MGI to see
if post-disruption RE current can be lowered. Finally, we have
briefly discussed the observer redesign at JET and the use of a
new tool based on graphs to possibly improve control per-
formances for the next SPI experiments.
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