1,794 research outputs found

    Quality Measures of Universities and the Determinants of Tuition in South Korea

    Get PDF
    University tuition had increased in highly excess of the inflation rate from 1990s until 2008. Many people are wondering whether the quality of university education is proportional to the tuition level. Thus, this capstone project examines whether the quality measures in higher education can predict the tuition level. After analyzing eight-year data of 146 private universities in South Korea, I get the result that university tuition is not a function of quality measures in terms of educational costs. However, tuition is a function of quality measures related with attractiveness, accomplishment, and satisfaction. Incoming student recruitment rate, and drop-out rate have significant impact on the tuition level at a 99 percent confidence level. Admission competition and research funding per faculty from internal sources also have statistically significant impact on the tuition level at a 95 percent confidence level. Even though the tuition level has increased continuously, the rate of university entrance in terms of high school graduates also increased. The cost of college education impacts society broadly, especially under these circumstances. Thus, governmental intervention may be necessary. Actually, the Korean government has tried to stabilize the level of tuition since 2011. So this study also examines policy effectiveness and gets the result that tuition is reduced by the policy as intended. Considering the result that the quality measures representing educational costs cannot predict the tuition level, universities should make an effort to relieve tuition burden by setting rational criteria of tuition level and reflecting all cost factors in this criteria. In the light of the result that tuition is a function of quality measures related with attractiveness, accomplishment, and satisfaction, government must be careful when it tries to regulate university tuition because there might be a possibility that the policy of tuition regulation would lead to deterioration in education quality

    High-performance near-infrared photodetector based on nano-layered MoSe2

    Get PDF
    In recent years, the integration of two-dimensional (2D) nanomaterials, especially transition metal chalcogendies (TMCs) and dichalcogendies (TMDCs), into electronic devices have been extensively studied owing to their exceptional physical properties such as high transparency, strong photoluminescence, and tunable bandgap depending on the number of layers. Herein, we report the optoelectronic properties of few-layered MoSe2-based backgated phototransistor used for photodetection. The photoresponsivity could be easily controlled to reach a maximum value of 238 AW–1 under near-infrared light excitation, achieving a high specific detectivity D∗ = 7.6×10** cmHz*/1W3* . Few-layered MoSe2 exhibited excellent optoelectronic properties as compared with those reported previously for multilayered 2D material-based photodetectors, indicating that our device is one of the best high-performance nanoscale near-infrared photodetector based multilayered two-dimensional materials

    A study on security grade assignment model for mobile users in urban computing

    Get PDF
    The relation between the information/knowledge expression and the physical expression can be involved as one of items for an ambient intelligent computing [2],[3]. Moreover, because there are so many contexts around user/spaces during a user movement, all appplcation which are using AmI for users are based on the relation between user devices and environments. In these situations, it is possible that the AmI may output the wrong result from unreliable contexts by attackers. Recently, establishing a server have been utilizes, so finding secure contexts and make contexts of higher security level for save communication have been given importance. Attackers try to put their devices on the expected path of all users in order to obtain users informationillegally or they may try to broadcast their SPAMS to users. This paper is an extensionof [11] which studies the Security Grade Assignment Model (SGAM) to set Cyber-Society Organization (CSO)

    A study on dynamic state information (DSI) around users for safe urban life

    Get PDF
    To select each node by devices and by contexts in urban computing, users have to put their plan information and their requests into a computing environment (ex. PDA, Smart Devices, Laptops, etc.) in advance and they will try to keep the optimized states between users and the computing environment. However, because of bad contexts, users may get the wrong decision, so, one of the users’ demands may be requesting the good server which has higher security. To take this issue, we define the structure of Dynamic State Information (DSI) which takes a process about security including the relevant factors in sending/receiving contexts, which select the best during user movement with server quality and security states from DSI. Finally, whenever some information changes, users and devices get the notices including security factors, then an automatic reaction can be possible; therefore all users can safely use all devices in urban computing

    Lymphangiography to treat postoperative lymphatic leakage: a technical review.

    Get PDF
    In addition to imaging the lymphatics and detecting various types of lymphatic leakage, lymphangiography is a therapeutic option for patients with chylothorax, chylous ascites, and lymphatic fistula. Percutaneous thoracic duct embolization, transabdominal catheterization of the cisterna chyli or thoracic duct, and subsequent embolization of the thoracic duct is an alternative to surgical ligation of the thoracic duct. In this pictorial review, we present the detailed technique, clinical applications, and complications of lymphangiography and thoracic duct embolization

    Heat transfer enhancement in a channel with porous baffles

    Get PDF
    An experimental and numerical investigation of heat transfer enhancement in a three dimensional channel using wall mounted porous baffles was conducted. The module average heat transfer coefficients were measured in a uniformly heated rectangular channel with staggered positioned porous baffles. A numerical procedure was implemented, in conjunction with a commercially available Navier-Stokes solver, to model the turbulent flow in porous media. The Brinkman-Forchheimer-Extended Darcy model was used for modeling fluid flow through the porous baffles. Conventional, oneequation, and two-equation models were used for heat transfer modeling. The accuracy and characteristics of each model were investigated and discussed. The results were compared with experimental data. Baffles were mounted alternatively on the top and bottom walls. Heat transfer coefficients and pressure loss for periodically fully developed flow and heat transfer were obtained for different pore densities (10, 20, and 40 pores per inch (PPI)) with two different baffle heights ( / h h B D = 1/3 and 2/3), and two baffle thicknesses ( / t h B D = 1/3 and 1/12). The Reynolds number (Re) was varied from 20,000 to 50,000. To compare the effect of foam metal baffles, the data for conventional solid-type baffles was obtained for ( / t h B D =1/3). The maximum uncertainties associated with the module Nusselt number and friction factor were 5.8% and 4.3%, respectively. The experimental procedure was validated by comparing the data for the straight channel without baffles ( / h h B D = 0) with those in the literature. The use of porous baffles resulted in heat transfer enhancement as high as 300% compared to heat transfer in straight channels without baffles. However, the heat transfer enhancement per unit increase in pumping power was less than one for the range of parameters studied in this work. Correlation equations were developed for the heat transfer enhancement ratio and the heat transfer enhancement per unit increase in pumping power in terms of Reynolds number. The conventional theoretical model, the dispersion conductivity model, and the modified two-phase model using the local thermal non-equilibrium theory were considered. The results from each model were compared against the experimental data, and compared to each other to investigate the efficiency of each model. Also, the characteristics of each model were discussed

    Efficiency Analysis of Project Management Offices for Large-scale Information System Projects: Insights for Construction Megaprojects

    Get PDF
    In this study, the efficiencies of Project Management Offices (PMOs) in large-scale information system (IS) projects are addressed by using data envelopment analysis. Moreover, the potential improvement levels for each input and output factors of inefficient PMOs are examined. The effects of performance levels of PMO functions on project outcomes with respect to efficiency levels are also analyzed. A total of forty-nine PMOs are analyzed for this study. The result shows that twenty-four PMOs are found to be efficient. As a result of analyzing the impact of efficiency on project performance depending on the functional levels of PMOs, those groups with a high degree of efficiency show higher outcomes compared with the groups with a low degree of efficiency regardless of the functional levels of PMOs. Furthermore, the gap in outcome between the groups with a high degree of efficiency and the groups with a low degree of efficiency is maintained at almost the same level, regardless of the functional levels of PMOs, with the exception of the case of practice management. This indicates that even those groups with a low degree of efficiency could expect high outcomes in terms of schedule and cost compliance if their level of practice management is high
    • …
    corecore