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Abstract 

In recent years, the integration of two-dimensional (2D) nanomaterials, especially transition 

metal chalcogendies (TMCs) and dichalcogendies (TMDCs), into electronic devices have 

been extensively studied owing to their exceptional physical properties such as high 

transparency, strong photoluminescence, and tunable bandgap depending on the number of 

layers. Herein, we report the optoelectronic properties of few-layered MoSe2-based back-

gated phototransistor used for photodetection. The photoresponsivity could be easily 

controlled to reach a maximum value of 238 AW–1 under near-infrared light excitation, 

achieving a high specific detectivity D∗ = 7.6×10**	cmHz*/1W3* . Few-layered MoSe2 

exhibited excellent optoelectronic properties as compared with those reported previously for 

multilayered 2D material-based photodetectors, indicating that our device is one of the best 

high-performance nanoscale near-infrared photodetector based multilayered two-dimensional 

materials. 

 

Introduction 

Recently, research interest towards low-dimensional material-based near-infrared (NIR) 

photo-devices have been rapidly increasing owing to their possible wide applications in various 

fields such as NIR imaging devices, biological sensors, photodetectors, and photovoltaic 

detectors [1-5]. In particular, layered 2-dimensional (2D) transition metal dichalcogendies 

(TMDCs) exhibit good optoelectronic performances in a wide range of ultraviolet (UV) to near-

infrared (NIR) wavelengths since their bandgap can be controlled by varying the thickness, 

which can be advantageous for the atomic scale optoelectronic devices [6,7]. Among different 

transition metal dichalcogendies (TMDCs), molybdenum disulfide (MoS2) has gained 

significant research attention owing to its excellent optoelectronic properties, such as high 

transparency and high photoresponsivity [8]. However, MoS2 photodetectors can be employed 

for detecting only in the visible range and their applications in the infrared region are limited 

[9]. Molybdenum diselenide (MoSe2), another TMDC material, which exhibits an indirect gap 

of 1.1 eV [10] in the bulk, could be a promising material for near-infrared photodetection 

applications. In addition, MoSe2 is expected to exhibit enhanced photoresponse properties as 

compared with MoS2 owing to their high optical absorption as previously reported by M. 

Bernardi et al. [11]. 

In this paper, we demonstrate a few-layered MoSe2-based photodetector that can be used in the 

near-infrared region. The device exhibits a high photoresponsivity of 238 AW–1 and an external 
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quantum efficiency (EQE) of 37,745 % under light excitation with a wavelength of 785 nm. 

The degradation observed in the optoelectronic properties of the photodetector can be 

explained based on the trapping effect occurring at the surface and the interface between the 

active layer and the oxide. Excellent optoelectronic properties are obtained with the values of 

photoresponsivity, EQE, and specific detectivity exceeding the previously reported values for 

similar or more complex structures.  

 

Experimental 

Titanium electrodes were deposited by electron–beam evaporation on thermally oxidized 

silicon substrates containing a silicone oxide (SiO2) layer with a thickness of 300 nm. Few-

layered flakes of natural MoSe2 (HQ graphene, Netherlands) was transferred on the Ti 

electrodes using PDMS (Dow Corning, Toray Co., Ltd) by mechanical exfoliation, and copper 

electrode was used as the back–gate. The structure was annealed at 400 °C under nitrogen 

atmosphere for two hours, in the aim to improve the ohmic contacts between titanium 

electrodes and the nano-layered MoSe2. The optoelectronic properties of the MoSe2 

photodetector were measured under laser illumination with a wavelength of 785 nm in 

atmospheric conditions using a laser power in the range of 0.015–810 µW employing a 

Semiconductor Characterization System 4200. The thickness was measured using a Pico plus 

5500 AFM (Agilent Technologies, USA). NRS–7100 laser Raman spectrometer was used for 

conducting Raman spectroscopy measurements.  

 

Results and discussion 

Thickness dependence on the optical properties of the few-layered MoSe2 was studied. Figure 

1(a) shows the optical microscope image of MoSe2 nano-flakes, where areas with different 

thicknesses are marked as “1 L”, “4 L,” and “B-L”. “1 L” and “4 L” correspond to the flake 

thickness of 0.7 and 3 nm, respectively, whereas “B-L” is associated to the bulk sample. 
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Figure 1 (a) Optical microscope image, (b) Raman spectra, and (c) Photoluminescence (PL) 

spectra of MoSe2 nano–flakes. 

 

Figure 1 (b) represents the Raman spectra of mono-layered, four-layered, few-layered, and bulk 

MoSe2, where the few-layered sample that was used in the photodetector shown in Figure 1 (a) 

is referred to as “Device”. Two peaks were observed at around 242 cm-1 and 287 cm-1, 

corresponding to the out-of-plane (A1g) and in-plane (E2g) Raman modes of MoSe2, 

respectively [12]. A1g peak softens (red-shifted) and the E2g stiffens (blue-shift) with a decrease 

in the number of layers. 

The photoluminescence (PL) spectra of the few-layered MoSe2 are shown in Figure 1(c). 

MoSe2 exhibits a higher photoluminescence intensity of 1.55 eV in the monolayer form as 

compared with the sample with more number of layers. However, MoSe2 flake with the 

thickness of 44 nm (referred to as Device in the figure) exhibits very low photoluminescence 

intensity. The PL intensity increases with a decrease in the number of layers due to the quantum 

confinement effect [13].  
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Figure 2 (a) Scanning electron microscopy image of the near-infrared photodetector based on 

few-layered MoSe2 and (b) AFM image of the NIR photodetector. The red line marks the 

respective cross section. (c) The flake thickness determined by the topographic analysis. 

 

The scanning electron microscope image of the near-infrared photodetector is shown in Figure 

2(a). The device length and width were 50 and 20 µm, respectively. Figure 2(b) represents the 

AFM image of the device, where the red line indicates the respective cross section. The 

thickness of the MoSe2 flake was deduced to be 44 nm from the topographic analysis, as seen 

in Figure 2(c). 

Figure 3 shows the transfer curve drain current (Id or Ids) versus gate voltage (VG) plot for 

the phototransistor (shown in the inset of Figure 3) measured under dark and atmospheric 

conditions.  

 

 

Figure 3 Gate voltage dependence on the drain current and the transconductance of MoSe2 

phototransistor at a drain–source voltage of 20 V. Inset: Schematic illustrating the back–gated 

phototransistor. 
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The dependence of the drain current on the gate voltage was examined under a polarization 

voltage (drain–source voltage or Vds) of 20V. The effective mobility (µ566) was deduced from 

the drain current – gate voltage transfer function using the equation: 

 µ566 = dI9 dV; × L WC>V9?      (1)  

Where L  and W  are the channel length and width, which are equal to 50 and 20 µm, 

respectively. C> is the gate capacitance measured using the equation C> = εAεB d, where εA 

and εB  are the permeability of air and silicon dioxide (SiO2), respectively. The effective 

mobility of our device was estimated to be 5.1 cm2V–1s–1 at a polarization voltage of 20 V. The 

transconductance was measured using the equation:  

gD = 9EF
9GH GFIGFJKL

     (2) 

The transconductance is represented by the blue curve in the same figure, indicating a 

maximum value of 1 µS at a gate voltage of –20 V. 

Figure 4 shows the schematic illustration of the energy band diagrams of the Si/SiO2/MoSe2 

contact in the back-gated field effect transistor before and after contact. The work function and 

the electron affinity of MoSe2 are 5.1 eV [14] and 4.45±0.11 eV [15], respectively. The energy 

band gap of MoSe2 is about 1.58 eV, as obtained from the photoluminescence results shown in 

Figure 2(c). As shown in Figure 4, at equilibrium, the phototransistor is in the accumulation 

mode, where electrons are accumulated at the interface and holes are pushed to the surface. 

Both electrical characterizations (Figure 3) and Energy band diagram along the vertical axis 

(Figure 4) showed that the phototransistor works in the accumulation mode, and in the absence 

of a gate voltage exhibiting a pinch–off voltage of about –40 V. 

 

 
Figure 4 Energy band diagram along the vertical axis illustrating the Si/SiO2/MoSe2: before 

contact (Flat-band condition) and after contact (at zero gate voltage). 
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Figure 5(a) represents the gate voltage dependence on the drain current at different laser power 

values with a polarization voltage of 20 V. The drain current increases on increasing the laser 

power due to the increase in the photogenerated carriers. From the linear dependence of the 

transfer curves illustrated in Figure 5(a), the shift in the threshold voltage can be deduced, 

which is plotted as a function of the laser power (inset of Figure 5(a)). 
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Figure 5 Dependence on the gate voltage at different values of laser power (indicated in (a)) 

of (a) drain current, (b) photocurrent, (c) photoresponsivity, and (d) EQE of NIR 

photodetector based on few-layered MoSe2. Inset in (a) shows the laser power dependence on 

the threshold voltage shift. 

 

The threshold voltage shifts negatively from a value of –41 V in dark conditions to a value of 

–54 V under illumination with a laser power of 810 µW. The negative shift in the threshold 

voltage could be attributed to the photogating effect [16]. 

The photocurrent (IMN) is given by IMN = I light − I(dark). IMN increases with an increase 

in the gate voltage and the laser power, as shown in Figure 5(b). The photoresponsivity (RZ) 
can be deduced from the photocurrent using the equation, RZ = IMN P, where P is the laser 
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power. The photoresponsivity exhibited a high fluctuation in the values at very low gate voltage 

due to the low subthreshold leakage current, with a maximum value of 238 AW–1 obtained at a 

gate voltage of –22 V, as shown in Figure 5(c). Nevertheless, MoSe2 exhibits a high 

photoluminescence in the bi- and mono-layer forms, as shown in Figure 2(c). Hence, the 

photoresponsivity is expected to improve by decreasing the number of layers. 

The EQE is measured using the equation, EQE = hcRZ eλ, where h is the Planck’s constant, 

e is the elementary electron charge, c is the light velocity, and λ is the excitation wavelength. 

Figure 5(d) represents the EQE measured at a drain source voltage of 20V at different laser 

power values. A maximum EQE value of 37,745 % is obtained at a laser power of 0.015 µW 

and a gate voltage of –22 V. However, EQE decreases with an increase in the laser power since 

the photoresponsivity decreases. The observed laser power and gate voltage dependence on the 

photocurrent can be explained using the energy band diagram (Figure 6(a)). At very low gate 

voltage values (VG < –22 V), the phototransistor works in the depletion mode as indicated in 

Figure 6(b) and photons emitted by the laser source generate electron–hole pairs while only 

electrons can be collected at the drain. Besides, only holes can be collected at the source when 

the voltage increases (VG > –22V).  

At an optimized gate voltage, barriers at the interface between the electrodes and the 

multilayered MoSe2 are minimized; therefore, both electrons and holes can be collected at drain 

and source, respectively, as illustrated in Figure 6(a). This explains the peaks observed in the 

photocurrent and photoresponsivity curve at a gate voltage of –22 V. However, when the laser 

power exceeds 157 µW, more electrons are attracted at the interface, when the gate voltage is 

very high (VG >> –22 V). Hence, the photocurrent is increased, exhibiting a higher value than 

that measured at gate voltage of –22 V (Figure 5(b)). 
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Figure 6 Energy band diagram of MoSe2 multilayer-based phototransistor along (a) the 

horizontal axis and (b) the vertical axis as a function of gate voltage.  

As seen in Figure 7(a), the photocurrent (IMN) exhibits a sublinear dependence on the laser 

power according to the equation IMN ∝ Pa , where P is the laser power. The exponent 𝛼 

could be deduced to be 0.45, 0.19, 0.30, and 0.36 at the gate voltage of –40, –22, 0, ad 20 V, 

respectively, in the laser power range of 0.015–157 µW. The sublinear dependence of the 

photocurrent on the laser power could be associated to the photogating effect [16]. 
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Figure 7 Dependence of (a) photocurrent, (b) photoresponsivity, and (c) detectivity on the 

laser power at different gate voltage values for the NIR photodetector based on few-layered 

MoSe2. 

 

The exponent 𝛼 exhibits minimum values at a gate voltage of –22 V, which can be explained 

based on the enhanced trapping effect, where both electrons and holes are trapped at the surface 

and the interface, respectively, as shown in Figure 6(b). In the accumulation mode, only 

electrons, which are the majority carriers, can be trapped at the interface. The concentration of 

electrons at the interface is increased with an increase in the gate voltage; therefore, the traps 

at the interface can be filled and more electrons are available to contribute to the electronic 

transport. Therefore, the trapping effect is weakened, which explains the increase in the value 

of 𝛼 at the positive gate voltage values. When the laser power is increased from 157 µW to 

810 µW, 𝛼 increases to 0.72, 0.47, 0.61, 0.72 and 0.78 for the gate voltage values of –40, –

22, 0, 20 and 40, respectively, due to the saturation of the traps with the high concentration of 

photo–excited electron–hole pairs at high laser power values. Moreover, MoSe2 is expected to 

exhibit a super linear dependence of the photocurrent at a very high laser power [17]. In 

addition, the photoresponsivity decreases with an increase in the laser power at different gate 

voltage values, as seen in Figure 7(b), which confirms the trapping effect at the interface due 

to the high concentration of traps between SiO2 and MoSe2 [18], which is measured to be 

7.6×1012 cm–2 by Chamlagain et al. [19]. The trapping effect at the surface originates due to 

the presence of physisorbed gas molecules such as O2 and H2O [20]. 

Another important figure of merit of a photodetector is its smallest detectable signal, referred 

by the specific detectivity, which is given by the equation D∗ =

𝐴𝐵 A.eRZ, 𝑖h 	 𝑐𝑚	𝐻𝑧*/1	𝑊3* , where 𝐴 is the effective area of the MoSe2 flake in 𝑐𝑚1 

(estimated to be 0.38×10–4 cm2), 𝐵 is the bandwidth, and 𝑖h is the measured noise current 

[21]. If the shot noise from the dark current is the main noise source, the specific detectivity 
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can be simplified as D∗ = RZ× 𝐴 A.e 2𝑒𝐼qrst A.e, where 𝑒 is the charge of an elementary 

electron [22]. The specific detectivity of the NIR photodetector based on MoSe2 as function of 

laser power and gate voltage is shown in Figure 7(c), indicating a maximum specific detectivity 

value of 7.6×10**	 cmHz*/1W3*  at the laser power of 0.015 µW and gate voltage of –22 

V. As shown in Table 1, the values for the photoresponsivity and the detectivity obtained for 

our sample are higher than the corresponding values previously reported for few-layered 2D 

material-based NIR photodetectors. 

 

Table 1. Comparison of figures-of-merit for NIR photodetectors based on few-layered 2D materials 

materials Spectral range Responsivity (AW–1) Detectivity (cmHz*/1W3*) Reference 

MoSe2 NIR 238 7.6×1011 this work 

Black phosphorus visible–NIR 4.8×10–3 N/A 23 

MoS2 visible–NIR 50–120 (×10–3) 1010–1011 6 

Bi2Se3 NIR 2.1 1.5×1011 24 

WSe2/MoS2 NIR 0.3 N/A 25 

Graphene/Bi2Se3 NIR 7 N/A 26 

MoS2/Black Phosphorus NIR 0.153 2.13×109 27 

 

Conclusion 

In conclusion, the optoelectronic properties of few-layered MoSe2-based back-gated 

phototransistor that can be used in the near-infrared region were investigated. The 

photoresponsivity and the EQE can be controlled to achieve the maximum values of 238 AW–

1 and 37,745%, respectively, by gate-tuning. A maximum specific detectivity of 

7.6×10**	cmHz*/1W3* was reported. Our results indicated that few-layered MoSe2-based 

photodetector is one of the best candidate to be used as high-performance nanoscale near-

infrared photodetectors, which might have potential applications in NIR imaging devices, 

sensors, and photovoltaic detectors. 
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