4,582 research outputs found

    Numerical optimization design of advanced transonic wing configurations

    Get PDF
    A computationally efficient and versatile technique for use in the design of advanced transonic wing configurations has been developed. A reliable and fast transonic wing flow-field analysis program, TWING, has been coupled with a modified quasi-Newton method, unconstrained optimization algorithm, QNMDIF, to create a new design tool. Fully three-dimensional wing designs utilizing both specified wing pressure distributions and drag-to-lift ration minimization as design objectives are demonstrated. Because of the high computational efficiency of each of the components of the design code, in particular the vectorization of TWING and the high speed of the Cray X-MP vector computer, the computer time required for a typical wing design is reduced by approximately an order of magnitude over previous methods. In the results presented here, this computed wave drag has been used as the quantity to be optimized (minimized) with great success, yielding wing designs with nearly shock-free (zero wave drag) pressure distributions and very reasonable wing section shapes

    The Liability Threshold Model for Censored Twin Data

    Full text link
    Family studies provide an important tool for understanding etiology of diseases, with the key aim of discovering evidence of family aggregation and to determine if such aggregation can be attributed to genetic components. Heritability and concordance estimates are routinely calculated in twin studies of diseases, as a way of quantifying such genetic contribution. The endpoint in these studies are typically defined as occurrence of a disease versus death without the disease. However, a large fraction of the subjects may still be alive at the time of follow-up without having experienced the disease thus still being at risk. Ignoring this right-censoring can lead to severely biased estimates. We propose to extend the classical liability threshold model with inverse probability of censoring weighting of complete observations. This leads to a flexible way of modeling twin concordance and obtaining consistent estimates of heritability. We apply the method in simulations and to data from the population based Danish twin cohort where we describe the dependence in prostate cancer occurrence in twins

    Predictions for the First Parker Solar Probe Encounter

    Full text link
    We examine Alfv\'en Wave Solar atmosphere Model (AWSoM) predictions of the first Parker Solar Probe (PSP) encounter. We focus on the 12-day closest approach centered on the 1st perihelion. AWSoM (van der Holst et al., 2014) allows us to interpret the PSP data in the context of coronal heating via Alfv\'en wave turbulence. The coronal heating and acceleration is addressed via outward-propagating low-frequency Alfv\'en waves that are partially reflected by Alfv\'en speed gradients. The nonlinear interaction of these counter-propagating waves results in a turbulent energy cascade. To apportion the wave dissipation to the electron and anisotropic proton temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011). We find that during the first encounter, PSP was in close proximity to the heliospheric current sheet (HCS) and in the slow wind. PSP crossed the HCS two times, namely at 2018/11/03 UT 01:02 and 2018/11/08 UT 19:09 with perihelion occuring on the south of side of the HCS. We predict the plasma state along the PSP trajectory, which shows a dominant proton parallel temperature causing the plasma to be firehose unstable.Comment: 16 pages, 5 figures; accepted for publication in the Astrophysical Journal Letter

    Hemorrhagic Metritis with Resulting Anemia

    Get PDF
    On Feb. 20, 1950, a 12 year old Boston bitch was admitted to Stange Memorial Clinic with a history of having hemorrhaged from the uterus over a period of three weeks. Upon admittance the dog showed extreme depression and a very pronounced anemia of the mucus membranes. A diagnosis of hemorrhagic metritis was made

    Simulating radiative shocks in nozzle shock tubes

    Full text link
    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The produced synthetic radiographs can be used for comparison with future nozzle experiments at high-energy-density laser facilities.Comment: submitted to High Energy Density Physic

    An exact Riemann solver based solution for regular shock refraction

    Full text link
    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest. When the shock impinges on the density discontinuity, it refracts and in the hydrodynamical case 3 signals arise. Regular refraction means that these signals meet at a single point, called the triple point. After reflection from the top wall, the contact discontinuity becomes unstable due to local Kelvin-Helmholtz instability, causing the contact surface to roll up and develop the Richtmyer-Meshkov instability. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase, by which we can quantify the vorticity deposited on the contact interface. We investigate the effect of a perpendicular magnetic field and quantify how addition of a perpendicular magnetic field increases the deposition of vorticity on the contact interface slightly under constant Atwood number. We predict wave pattern transitions, in agreement with experiments, von Neumann shock refraction theory, and numerical simulations performed with the grid-adaptive code AMRVAC. These simulations also describe the later phase of the Richtmyer-Meshkov instability.Comment: 21 pages, 17 figures in 41 ps-files, accepted by J. Fluid Mec

    Making Anti-de Sitter Black Holes

    Get PDF
    It is known from the work of Banados et al. that a space-time with event horizons (much like the Schwarzschild black hole) can be obtained from 2+1 dimensional anti-de Sitter space through a suitable identification of points. We point out that this can be done in 3+1 dimensions as well. In this way we obtain black holes with event horizons that are tori or Riemann surfaces of genus higher than one. They can have either one or two asymptotic regions. Locally, the space-time is isometric to anti-de Sitter space.Comment: LaTeX, 10 pages, 6 postscript figures, uses epsf.te
    corecore