58 research outputs found

    Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    Get PDF
    BACKGROUND: The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. METHODS: The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. RESULTS: Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. CONCLUSION: Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

    Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation

    Get PDF
    The potential for inhibitors of nuclear factor-κB (NF-κB) activation to act as inhibitors of muscle protein degradation in cancer cachexia has been evaluated both in vitro and in vivo. Activation of NF-κB is important in the induction of proteasome expression and protein degradation by the tumour factor, proteolysis-inducing factor (PIF), since the cell permeable NF-κB inhibitor SN50 (18 μM) attenuated the expression of 205 proteasome α-subunits, two subunits of the 195 regulator MSSI and p42, and the ubiquitin-conjugating enzyme, E214k, as well as the decrease in myosin expression in murine myotubes. To assess the potential therapeutic benefit of NF-κB inhibitors on muscle atrophy in cancer cachexia, two potential inhibitors were employed; curcumin (50 μM) and resveratrol (30 μM). Both agents completely attenuated total protein degradation in murine myotubes at all concentrations of PIF, and attenuated the PIF-induced increase in expression of the ubiquitin-proteasome proteolytic pathway, as determined by the 'chymotrypsin-like' enzyme activity, proteasome subunits and E2 14k. However, curcumin (150 and 300 mg kg-1) was ineffective in preventing weight loss and muscle protein degradation in mice bearing the MAC16 tumour, whereas resveratrol (1 mg kg-1) significantly attenuated weight loss and protein degradation in skeletal muscle, and produced a significant reduction in NF-κB DNA-binding activity. The inactivity of curcumin was probably due to a low bioavailability. These results suggest that agents which inhibit nuclear translocation of NF-κB may prove useful for the treatment of muscle wasting in cancer cachexia

    Effect of resveratrol on alcohol-induced mortality and liver lesions in mice

    Get PDF
    BACKGROUND: Resveratrol is a polyphenol with important antiinflammatory and antioxidant properties. We investigated the effect of resveratrol on alcohol-induced mortality and liver lesions in mice. METHODS: Mice were randomly distributed into four groups (control, resveratrol-treated control, alcohol and resveratrol-treated alcohol). Chronic alcohol intoxication was induced by progressively administering alcohol in drinking water up to 40% v/v. The mice administered resveratrol received 10 mg/ml in drinking water. The animals had free access to standard diet. Blood levels were determined for transaminases, IL-1 and TNF-α. A histological evaluation was made of liver damage, and survival among the animals was recorded. RESULTS: Transaminase concentration was significantly higher in the alcohol group than in the rest of the groups (p < 0.05). IL-1 levels were significantly reduced in the alcohol plus resveratrol group compared with the alcohol group (p < 0.05). TNF-α was not detected in any group. Histologically, the liver lesions were more severe in the alcohol group, though no significant differences between groups were observed. Mortality in the alcohol group was 78% in the seventh week, versus 22% in the alcohol plus resveratrol group (p < 0.001). All mice in the alcohol group died before the ninth week. CONCLUSION: The results obtained suggest that resveratrol reduces mortality and liver damage in mice

    Multifactorial anticancer effects of digalloyl-resveratrol encompass apoptosis, cell-cycle arrest, and inhibition of lymphendothelial gap formation in vitro

    Get PDF
    BACKGROUND: Digalloyl-resveratrol (di-GA) is a synthetic compound aimed to combine the biological effects of the plant polyhydroxy phenols gallic acid and resveratrol, which are both radical scavengers and cyclooxygenase inhibitors exhibiting anticancer activity. Their broad spectrum of activities may probably be due to adjacent free hydroxyl groups. METHODS: Protein activation and expression were analysed by western blotting, deoxyribonucleoside triphosphate levels by HPLC, ribonucleotide reductase activity by 14 C-cytidine incorporation into nascent DNA and cell-cycle distribution by FACS. Apoptosis was measured by Hoechst 33258/propidium iodide double staining of nuclear chromatin and the formation of gaps into the lymphendothelial barrier in a three-dimensional co-culture model consisting of MCF-7 tumour cell spheroids and human lymphendothelial monolayers. RESULTS: In HL-60 leukaemia cells, di-GA activated caspase 3 and dose-dependently induced apoptosis. It further inhibited cell-cycle progression in the G1 phase by four different mechanisms: rapid downregulation of cyclin D1, induction of Chk2 with simultaneous downregulation of Cdc25A, induction of the Cdk-inhibitor p21(Cip/Waf) and inhibition of ribonucleotide reductase activity resulting in reduced dCTP and dTTP levels. Furthermore, di-GA inhibited the generation of lymphendothelial gaps by cancer cell spheroid-secreted lipoxygenase metabolites. Lymphendothelial gaps, adjacent to tumour bulks, can be considered as gates facilitating metastatic spread. CONCLUSION: These data show that di-GA exhibits three distinct anticancer activities: induction of apoptosis, cell-cycle arrest and disruption of cancer cell-induced lymphendothelial disintegration. British Journal of Cancer (2010) 102, 1361-1370. doi:10.1038/sj.bjc.6605656 www.bjcancer.com (C) 2010 Cancer Research U

    Activation of Sirt1 by Resveratrol Inhibits TNF-α Induced Inflammation in Fibroblasts

    Get PDF
    Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1β), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-α) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases

    Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase

    No full text
    NF-κB is responsible for upregulating gene products that control cell survival. In this study, we demonstrate that SIRT1, a nicotinamide adenosine dinucleotide-dependent histone deacetylase, regulates the transcriptional activity of NF-κB. SIRT1, the mammalian ortholog of the yeast SIR2 (Silencing Information Regulator) and a member of the Sirtuin family, has been implicated in modulating transcriptional silencing and cell survival. SIRT1 physically interacts with the RelA/p65 subunit of NF-κB and inhibits transcription by deacetylating RelA/p65 at lysine 310. Treatment of cells with resveratrol, a small-molecule agonist of Sirtuin activity, potentiates chromatin-associated SIRT1 protein on the cIAP-2 promoter region, an effect that correlates with a loss of NF-κB-regulated gene expression and sensitization of cells to TNFα-induced apoptosis. While SIRT1 is capable of protecting cells from p53-induced apoptosis, our work provides evidence that SIRT1 activity augments apoptosis in response to TNFα by the ability of the deacetylase to inhibit the transactivation potential of the RelA/p65 protein
    corecore