189 research outputs found

    Coronal heating by waves

    Get PDF
    Alfven waves or Alfvenic surface waves carry enough energy into the corona to provide the coronal energy requirements. Coronal loop resonances are an appealing means by which large energy fluxes enter active region loops. The wave dissipation mechanism still needs to be elucidated, but a Kolmogoroff turbulent cascade is fully consistent with the heating requirements in coronal holes and active region loops

    Wavelength dependence of the interplanetary scintillation index

    Get PDF
    Published observations of the interplanetary scintillation index m sub z are shown to vary with wavelength in a manner consistent with a smooth, power law spectrum of plasma fluctuations. This is in contrast to recent work arguing that the data require a spectrum with two separate regimes. It is concluded that published observations of m sub z are consistent with either type of density spectrum

    On the preferential acceleration and heating of solar wind heavy ions

    Get PDF
    The feasibility of producing the observed velocities and temperatures of solar wind heavy ions by the resonant cyclotron interaction with left-polarized hydromagnetic waves was investigated. A "most favorable case" scenario in which the waves are parallel-propagating and dispersionless and the energy for the wave acceleration and heating is taken from saturated low-frequency Alfven waves via a cascade to higher frequencies, is incorporated into a numerical solar wind code and agreement with observation is tested. The resonant cyclotron interaction is shown to fail on at least three points, even in this most favorable case

    Collisional damping of surface waves in the solar corona

    Get PDF
    The damping of surface waves by viscosity and heat conduction is evaluated. For the solar corona, it is found that surface waves dissipate efficiently only if their periods are shorter than a few tens of seconds and only if the background magnetic field is less than about 10 Gauss. Heating of quiet coronal regions is possible if the coronal waves have short periods, but they cannot heat regions of strong magnetic field, such as coronal active region loops

    A statistical ray analysis of the scattering of radio waves by an anisotropically turbulent, non-homogeneous solar corona

    Get PDF
    Statistical ray analysis of radio wave scattering by anisotropically turbulent nonhomogeneous solar coron

    Radial evolution of intermittent heat flux in solar coronal holes

    No full text
    International audienceRecently, we suggested that the source of ion heating in solar coronal holes is small-scale reconnection events (microflares) at the coronal base. The microflares launch intermittent heat flux up into the corona exciting ion cyclotron waves through a plasma microinstability. The ions are heated by these waves during the microflare bursts and then evolve with no energy input between the bursts. The overall coronal heating by this mechanism is a summed effect of all microflare bursts during the expansion time of the solar wind and adiabatic cooling between the microflares. The intermittent heat flux produced by the microflares was modeled as electron beams with constant speed and temperature for simplicity. In this paper, we consider a more sophisticated model of the heat flux taking into account the action of the mirror force and the charge separation electric field on the beam particles. We show that the radial evolution of the heat flux is determined mainly by the beam expansion along the magnetic field roughly at the root mean square velocity of the beam particles, while the variation of the beam bulk speed and thermal energy is less important

    A Technique for Measuring Electrical Currents in the Solar Corona

    Get PDF
    A technique is described for measuring electrical currents in the solar corona. It uses radioastronomical polarization measurements of a spatially-extended radio source viewed through the corona. The observations yield the difference in the Faraday rotation measure between two closely-spaced lines of sight through the corona, a measurement referred to as {\em differential Faraday rotation}. It is shown that the expression for differential Faraday rotation is proportional to the path integral nBds\oint n \vec{B}\cdot \vec{ds} where nn is the plasma density and B\vec{B} is the coronal magnetic field. The integral is around a closed loop (Amperian Loop) in the corona. If the plasma density is assumed roughly constant, the differential Faraday rotation is proportional to the current within the loop, via Ampere's Law. The validity of the constant density approximation is discussed, and two test cases are presented in which the associated error in the inferred current is small, of order tens of percent or less. The method is illustrated with observations of the radio source 3C228 with the Very Large Array (VLA) in August, 2003. A measurement of a differential Faraday rotation ``event'' on August 16, 2003, yields an estimate of 2.5×1092.5 \times 10^9 Amperes in the Amperian Loop. A smaller event on August 18 yields an enclosed current of 2.3×1082.3 \times 10^8 Amperes. The implications of these currents for coronal heating are briefly discussed.Comment: Revised version of paper; accepted for Astrophysical Journal, vol 670, November 20, 200

    Dissipation in intercluster plasma

    Get PDF
    We discuss dissipative processes in strongly gyrotropic, nearly collisionless plasma in clusters of galaxies (ICM). First, we point out that Braginsky theory, which assumes that collisions are more frequent that the system's dynamical time scale, is inapplicable to fast, sub-viscous ICM motion. Most importantly, the electron contribution to collisional magneto-viscosity dominates over that of ions for short-scale Alfvenic motions. Thus, if a turbulent cascade develops in the ICM and propagates down to scales 1\leq 1 kpc, it is damped collisionally not on ions, but on electrons. Second, in high beta plasma of ICM, small variations of the magnetic field strength, of relative value 1/β\sim 1/\beta, lead to development of anisotropic pressure instabilities (firehose, mirror and cyclotron). Unstable wave modes may provide additional resonant scattering of particles, effectively keeping the plasma in a state of marginal stability. We show that in this case the dissipation rate of a laminar, subsonic, incompressible flows scales as inverse of plasma beta parameter. We discuss application to the problem of ICM heating.Comment: 4 pages, accepted by ApJ Let

    Coronal heating distribution due to low-frequency wave-driven turbulence

    Get PDF
    The heating of the lower solar corona is examined using numerical simulations and theoretical models of magnetohydrodynamic turbulence in open magnetic regions. A turbulent energy cascade to small length scales perpendicular to the mean magnetic field can be sustained by driving with low-frequency Alfven waves reflected from mean density and magnetic field gradients. This mechanism deposits energy efficiently in the lower corona, and we show that the spatial distribution of the heating is determined by the mean density through the Alfven speed profile. This provides a robust heating mechanism that can explain observed high coronal temperatures and accounts for the significant heating (per unit volume) distribution below two solar radius needed in models of the origin of the solar wind. The obtained heating per unit mass on the other hand is much more extended indicating that the heating on a per particle basis persists throughout all the lower coronal region considered here.Comment: 19 pages, 5 figures. Accepted for publication in Ap
    corecore