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ABSTRACT

The scattering of radio waves by an anisotropically turbulent
solar corona exhibiting large-scale refraction effects {due to a radial
gradient in average electron density) is discussed in terms of a
statistical ray analysis similar to that of Chandrasekhar (1952). The
corona is assumed to be spherically symmetric throughout. The ray

equations of geometrical optics are written in terms of the spherical
coordinate system natural to the solar corona, and discussed for both
the case of a spherically symmetric average corona for which the
electron density is an exactly specifiable function of position, and the
case of an anisotropically turbulent corona for which the electron

density may be known in only a statistical sense.

For the case where the corona is turbulent, and therefore

known in only a statistical sense, a linear perturbation analysis is
employed to obtain, for the first time, quadrature solutions for the
statistical fluctuations in the ray position, signal phase, and pulse
propagation time for a corona exhibiting large scale refraction. The
general expressions thus obtained are discussed in particular for the
special case of nearly linear rays. It is shown that at appropriate
frequencies even very slight ray curvatures can have a significant
effect on the fluctuations in the times of propagation of pulse signals
across the corona, a conclusion discussed in terms of the Sunblazer

experiment (Harrington (1965)) and the test of general relativity pro-
posed by Shapiro (1964). Throughout the work we seek to provide a
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proper analytical framework in which to interpret observed fluctua-
tions in the signal angle of arrival (related to the redistribution of

signal energy in the sky), fluctuations in the arrival times of pulse
signals, and variations in the signal bandwidth. Our attention is
drawn specifically to deducing, as functions of distance from the
sun, the mean square fluctuations in electron density, the statistical
correlation lengths, and the degree of anisotropy. We also consider
what effects might be observed to arise from non-radial coronal out-
flow and curvature of the general solar magnetic field lines. The

work concludes with a discussion of scattering data available at
present; this is shown to be consistent, beyond some ten solar radii,
with a coronal density behaving as r -2, a degree of anisotropy nearly
constant with distance from the sun, and a statistical correlation

length which during solar minimum does not vary with (r}, but which

tends to increase linearly with (r} near solar maximum indicating
that the interplanetary plasma develops a radial filamentary structure
as solar maximum is approached.
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CHAPTER I

Introduction to the Problem

Background

Machin and Smith (1 951) and Vitkevich (1 951 ) suggested that

the observation of astronomical radio sources passing close to the sun

could lead to the determination of a coronal electron density profile if

the effective occultation radius could be found as a function of frequency.

Early observations seeking to utilize this predicted effect (Hewish

(1955)), Machin and Smith (1952), Vitkevich (1955))observed, however,

only what proved to be an apparent broadening of the source due to

scattering of the radio waves by irregularities in the electron density

of the corona. The observed scattering was shown by Hewish (1955)

to be consistent with the multiple scattering wave theory of Fejer (1953)

and the multiple scattering ray theory of Chandrasekhar (1 952). The

existence of multiple scattering of radio waves from many coronal

irregularities has since been verified by numerous observations. The

promise of utilizing this observed radio scattering as a means of in-

vestigating coronal irregularities and solar wind turbulence has led

during the past ten years to a great number of observations by a number

of workers of coronal scattering of radio sources passing close to the

sun(Hewish, et al (1955, 1958, 1963, 1964, 1965, 1966), Slee (1959,

1901, 1960), Hogbom (1960), Gorgolewski and Hewish (1960), Erickson

(1964), Vitkevich (1960, 1966), Pisareva (1959), Little, et al (1966a, b),
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Briggs (1961), Dennison and Hewish (1967), Yakovlev, et al (1966),

Douglas and Smith (1967), Cohen, et al (1966, 1967)).

In spite of the proliferation of observational work, however,

little has been accomplished toward a proper theoretical foundation

upon which the interpretation of the data must rest. As a result even

the most basic observations have been at times incorrectly interpreted,

and the groundwork for the proper understanding of effects due to coro-

nal anisotropy and large scale coronal density gradients has not been

laid. The ray theory of Chandrasekhar (1952) is applicable only to

media which are isotropically turbulent and, on the average, uniform.

The ray analysis of Vitkevich (1966) is somewhat more general, but

does not include effects of overall refraction by the corona and is

limited only to an isotropically turbulent or to an extremely aniso-

tropically turbulent corona the density of which exhibits a simple power

law behavior with distance from the solar center. Similarly, although

recent progress has been made in wave theories of scattering, only

the "thin screen" approximation has been worked out for isotropically

turbulent media exhibiting no large scale refraction (Fejer (1953),

Ratcliffe (1956), Chernov (1960), Tatarski (1961), Wagner (1962),

Mercier (1962), Briggs and Parkin (1963), Little and Hewish (1966),

Salpeter (1967)). Furthermore, the existing theories are oriented

primarily toward the scattering of incoherent sources, and have for

the most part not been extended to coherent artificial sources.

It is therefore the intent of this dissertation to provide an

analytical framework in which to interpret the scattering of coherent
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radio sources when statistical anisotropy and large scale refraction

effects of the medium may be important. The use of coherent sources

as a means of investigating the average coronal electron density has

been suggested by Harrington (1965) and ways will be suggested in this

work to utilize the same coherent source as a means of investigating

the (smaller scale) statistical structure of the corona. We shall seek

to include large scale refraction effects and turbulent anisotropy be-

cause the coronal electron density is a strong function of distance from

the sun (refraction) and anisotropic scattering has been observed.

As stated above the problem of this work is a broad one indeed,

and some restriction of the problem is necessary. We shall restrict

our attention to a ray analysis of small angle scattering in a spherically

symmetric corona. The assumption of spherical symmetry should be

quite valid near the solar maximum , but somewhat less so

near solar minimum The departures from sphericity in the

latter case seem, however, to be of sufficiently small magnitude that

ray trajectories calculated on the basis of sphericity will not be much

in error, particularly for those rays lying near the solar equatorial

plane. The assumption of small angle scattering would seem to be

justified on the basis of the present observations which indicate that

for frequencies above some tens of megacycles the scattering does not

exceed a few degrees; we may thus employ a linear theory of perturba-

tion. The choice of a ray analysis, rather than a diffraction theory,

has been made for a number of reasons. Foremost among these is

simplicity. Calculations based on a wave theory are exceedingly

difficult, and are at present limited to the thin screen approximation



for isotropically turbulent media exhibiting no large scale refraction.

Since our purpose is to examine the effects of large scale refraction

and statistical anisotropy it appears that a ray theory will be most

suitable. Use of a ray theory is difficult to formally justify, however.

One necessary condition is certainly that the wavelength be small com-

pared to the smallest scale size of the coronal irregularities. As we

will be dealing with wavelengths on the order of meters and inhomoge-

neities on the order of hundreds of kilometers in size this condition

will certainly be met; no effects due to very small scale turbulence have

been seen, and we do not include this possibility in this work. However,

in order to neglect diffraction we require

2
k (s-s o ) << r o (1.1)

This condition says that in order for diffraction to be neglected the

scale of the diffraction pattern produced by an irregularity of scale

size r at a distance (s-s ° ) must be much less than the scale of theo

irregularities themselves. It may be also interpreted as saying that

diffraction may be neglected if many Fresnel zones lie within the scale

size of the coronal inhomogeneities. This condition is not met for X = 1

= = 200 kilometers (Hewish and Dennisonmeter, (s-s ° ) 1 AU, and v °

(1966)). Thus we might expect to see diffraction effects. Furthermore,

it occurs to us that if the variation in phase upon traversing the coronal

scattering region is greater than about 1 radian it will then make little

sense to talk about the scale of a diffraction pattern or the dimensions

of the Fresnel zones in the usual way. Thus for large variations in

phase condition (1.1) would seem to be incorrect. In that case the
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proper condition for neglect of diffraction is (Salpeter (1967), Cohen,

et al (1967)}

22_T
)_ (S-So) << O (1. 2)

6_
r.m.S.

where 5_r. m.s. is the root-mean-square fluctuation in phase upon

traversing the medium. This condition says that diffraction may be

neglected if the fluctuations in angle of arrival of a signal are such that

the (point) source location in the sky never appears to fluctuate by more

than the average angular dimensions of an inhomogeneity, i.e. 5_b
r.m.s.

<< Vo/(S-So), where 5_9 r. m.s. is the root-mean-square fluctuation in

signal angle of arrival. For k = 1 meter, (s-s ° ) = 1 AU, and v = 200o

km condition (1.2) is not satisfied, suggesting once again that we may

expect to see diffraction effects. But let us see what the effects of dif-

fraction might be. We may consider the coronal inhomogeneities as

redistributing the energy from a point source over some non-zero solid

angle in the sky. Diffraction due to the coronal irregularities will re-

sult in this redistribution of energy taking the form of a diffraction

pattern with an angular scale k/v ° radians. If k = 3 meters and v =o

200 km this scale is on the order of 10 -3 degrees. But for rays passing

within about 100 solar radii from the sun and frequencies on the order

of 100 MHz the redistribution of energy is observed to occur over at

least several minutes of arc, indicating that the scattering due to local

fluctuations in refractive index (and the consequent ray bending) can

preponderate that due to interference effects. In fact, it may be shown

(Chandrasekhar (1952)) that the angular redistribution of energy due to



diffraction will be much less than that calculated on the basis of a ray

theory as long as

6¢ >> I (I.3)
r.m.s.

The fact that the wave theory of Fejer (1953) reduces to the ray theory

of Chandrasekhar in the limit of large phase variations validates this

conclusion. Thus inequality (1.3) represents a fundamental condition

on the validity of our results. Furthermore, if multiple random

scattering occurs we expect, according to the central limit theorem,

the energy distribution in the sky to follow a normal distribution, indi-

cating that the fine structure of an interference pattern will be masked

by the dominant small scale refractive effects. Since these refractive

effects are adequately described by a ray theory, we proceed in that

direction. Discussion of the validity of a ray analysis in terms of the

propagation of a wave through a plasma awaits Chapter II.

Having thus introduced our theoretical model, we shall now

further describe the specific problems we will (and will not) treat. We

shall not be concerned explicitly with the behavior in time of the scat-

tering phenomena, but only with temporal averages of the statistical

quantities. This neglect of the temporal behavior of the fluctuating

quantities would at first inspection appear to require that the time of

flight of a signal across the scattering region be much less than the

time required for a density fluctuation to drift across the line of sight,

if the fluctuations are "stable" for this Iength of time (the observations

of Hewish and Okoye (1965) support this latter notion). However, if

the individual fluctuations (blobs) are statistically independent we need
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then only require that the signal time of flight across a fluctuation be

much less than the time in which a single "blob" drifts across a line of

sight; this condition is equivalent to the requirement that the drift veloc-

ity component normal to the line of sight be much less than the speed of

light, a condition certainly fulfilled for the solar corona. We shall

furthermore confine our attention only to what might be learned from

observations at a single observing station (this includes interferometers

with baselines much less than r ), neglecting correlation phenomenao

between widely separated stations. The latter type of observation re-

quires a number of stations appropriately connected, and is therefore

more difficult than the use of one station only; as we shall see, the use

of coherent sources allows much to be learned with just one observing

station. Next, although we shall initially consider any degree of large

scale ray bending we shall discuss in detail only the case of slight ray

curvature, utilizing only the zeroth and first degree terms in an expan-

_¢pZ/ 2. Finally, we shall not consider the effects of fluctua-sion in

tions in the general solar magnetic field on the scattering, although this

might be expected to result in observed fluctuations in signal polarization.

We thus see that a number of problems have been omitted. The

temporal behavior of the fluctuations, correlations between widely sepa-

rated observation stations, pronounced ray curvature (closely related

to this arc scattering phenomena associated with radar observations of

the sun), and magnetic effects are all problems of importance, and

subjects for future investigation. It is felt, however, that the proper

definition of this work must exclude these problems.



We are now ready to proceed. In Chapter II we present the basic

equations we shall use, and, for orientation, we discuss them for a

spherically symmetric corona exhibiting no small scale irregularities.

In Chapter III are solved, for the first time, the first order perturba-

tion equations for rays propagating through a spherically symmetric

average corona upon which are "superposed" small scale turbulent

fluctuations. The solutions thus obtained are used to derive proper

expressions for fluctuations in the ray position, signal phase, and pulse

signal propagation times. Finally, in Chapter IV these expressions for

the scattering quantities are discussed for the special case of nearly

linear rays. It is shown that even very slight ray curvature can have a

significant effect on the fluctuations in the times of propagation of pulse

signals across the corona, a conclusion discussed in terms of the Sun-

blazer experiment and the test of general relativity proposed by Shapiro.

We also provide there a proper analytical framework in which to inter-

pret fluctuations in the angle of arrival of a signal (related to the redis-

tribution of signal energy in the sky), fluctuations in the arrival times

of pulse signals, and fluctuations in the signal bandwidth. Our attention

is drawn specifically to deducing, as functions of distance from the sun,

the mean square fluctuations in electron density, the correlation lengths,

and the degree of anisotropy. Our attention is also drawn to examining

the possible effects of non-radial coronal outflow and curvature of the

general solar magnetic field lines. The chapter concludes with a dis-

cussion of present data in the context of our analytical findings.

Having thus anticipated some of the principal contributions of

this work, we are now ready to proceed.
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CHAPTER II

The Average Corona

Introduction

It is the purpose of this chapter to obtain a mathematical for-

malism with which we may discuss the behavior of electromagnetic

in a refractive medium, such as the solar corona, and to examine

in some detail the radio ray trajectories in a specific model for a

spherically symmetric average corona for which we may specify

exactly the spatial dependence of the index of refraction.

The Basic Ray Equations

As was discussed in Chapter I we shall confine our attention

throughout this work to a description of the radio propagation through

the solar corona based on the behavior of radio rays {in the same

sense as is usually employed in geometrical optics} in a refractive

medium. We begin therefore with the well known equation for ray

trajectories in a medium of arbitrary refractive index (see, for

example, Rossi, "Optics", Addison-Wesley (1957), §2-3):

d(dr)3_ /_ 32- = _ (2.1)

where r = position vector to ray

= refractive index (a function of space}

s = arc length along the ray

In the usual notation of a right-handed Cartesian coordinate system

- (2. i) becomes



lO

d dy __
8y

d

8z

(2.2)

while in the spherical coordinate system defined by the following figure

Z

" O ,_)

_r iir(r'

I _y

._ I I ii
I

X

equations (2. I) take the forms

_Fs _ sin@ cos e }rs- - r sin@ sine

+r cos_ cos@ _ss]} = 8___(sin_ cosO)8r (2.3)

____(_,,.,_,)+0,,(oosoco_e)ae r sin _ _-_ r
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_ sin_0 sin@ _dr +r sin_0 cos@

d_0] } = 8_ (sin_0 sinS)+ r cos _ sin 8 _[_ _-_.

+ 8_'8D(rCOSe_._sln_/ + _8D (cos_sin8 Ir

drcos _o_-f - d_] } = O# (cos m)r sin _ _ _-9

(2.4)

The (r,O,@) representation of equations (2.3)-(2.5) will be most useful

here as the solar corona, which closely exhibits spherical symmetry,

is most conveniently described in a spherical coordinate system.

Equations (2.3)-(2.5) are the fundamental equations that shall

be used; they incorporate no assumptions other than the appropriate-

ness of the ray description. The independent variable in these equa-

tions is the arc length, s, along a ray, and the ray coordinates (r,O,q_)

may be regarded as functions of s. However, the right-hand sides of

equations (2.3)-(2.5) are noted to contain the factors _--_,8-_-'and _-_

which are explicitly functions of (r,@,cp). A formal connection can be

made, however, between s and the position coordinates (r,8,cp) via

the relation

(ds)2 = (dr)2 + r2 sin2 _ (d8)2 + r2 (d_0)2 (2.6)

Thus, the set of equations (2.3)-(2.6) can completely determine the
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ray trajectories in a medium of specified refractive index _(r,O,q_).

In what follows in this chapter we shall confine our attention to an in-

teresting special case.

The Spherically Symmetric Corona

In this paragraph our attention will be confined to the useful

special case of a spherically symmetric solar corona, with refractive

index a function of the radial coordinate r only:

Do = Do(r) (2.7)

where the subscript ( )o designates that we are dealing with a speci-

fiable, rather than a random, configuration. The usefulness of this

notation will become apparent in Chapter III, where the ray trajectories

here described become the basis of a perturbation description of scat-

tering. The assumption of spherical symmetry appears to be quite valid

near the maximum of the solar activity cycle, but less so near solar

minimum The departures from sphericity in the

latter case seem, on purely qualitative grounds, to be of sufficiently

small magnitude, however, that ray trajectories calculated on the basis

of equation (2.7) will not be much in error. But it should be pointed out

that occasional departures from spherical symmetry occur which are

of such magnitude as to blatantly violate equation (2.7)

These cases will not be considered.

We begin by inserting equation (2.7) into (2.5) to obtain

d dr° sin ¢Po = cos _o _2.8)_I} _o cos _o _ - ro _ -'dT- •
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This equation is identically satisfied by

Co(S) = _/z. (2.9)

That is, a solution exists in which the ray trajectories lie wholly in the

plane _0= _/2. Since, in a spherically symmetric corona, there is

nothing special about the orientation of the _ = 0 axis we can conclude

that in the case of sphericity the ray trajectories are planar. (This is

analagous to the central force problem of classical mechanics. ) We

shall therefore confine our attention only to those rays lying in the plane

specified by equation (2.9); by virtue of the assumed spherical symme-

try the complete set of ray trajectories in that plane represents the

total set of ray geometries for the entire corona, and therefore we

lose no information by confining our attention only to the plane _ = _/2.

If equations (2.7) and (2.9) are inserted into equations (2.3) and

(Z. 4) we obtain the two relations

( [ :d dr° sin 8 cos 0 (2.10)
/_o cos e ° T - ro o -dTl o 71-F

_o sinO o + r cos 0 o (2. II)o-aT o o-_ = sin Oo --d-r-.

Multiplying equation (2. i0) by sin @ and (2. Ii) by cos 8 and subtrac-
O O

ting the resultant equations yields, after some simplification,

d r o
o o _ = 0 . (z.lz)

This important relation (analagous to the conservation of angular
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momentum} states that the bracketed quantity in equation (2.12) is

constant along the ray; denoting the constant by C we have

dO
2 O =

/_o ro _ C . (2.13)

Now, constant C may be readily evaluated by considering the geometry

of the rays in the plane _ = y/2:

ray

\

S

O r

Sun

_A

Source

As the figure implies, we shall consider a ray to originate at position

(r = r i, @ = O) at an angle q_i with respect to the source-sun line.

Letting the subscript ( )i represent the initial conditions of the ray,

it is easy to show that

dOO" __sinair.
1 1

(2. 14)

which, when inserted into equation (2.13), gives

C = _tiri sinq_i " (2.15)
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Combining equations (Z. 1 3) and (Z. 1 5) yields the equation determining

the rays in a spherically symmetric corona:

d8
Z o =

Doro -d_ Diri sinq_i = C • (2.16)

Equation {Z. 16) is most useful when the variable s is eliminated.

If we set _o = ?r/Z in equation (Z. 6) we obtain

= Z (dOo)Z (Z. 17)(ds)2 (dro)Z + ro

which may be immediately put in the form

- dr ° h 2
(__)dE)o. 2 = ro2 + (_[B-/ " (2.18)

0

Equation (Z. 18) may be used to eliminate the variable s from (2.16).

We obtain

_=dr
O

d@o = r°<_iZ_°r°riZZsin22 _°i II i/2 " (2.19)

If the rays are concave away from the sun, as will be the case in a

corona exhibiting a decreasing electron density with increasing dis-

tance from the sun, the minus sign will be appropriate when 8 < 8
0 cr '

while the plus sign will be appropriate for

fined to be that value of 8 for which dr
O O

of the ray. We shall similarly define

_> 8 where 8 is de-8o cr' cr

= 0, i.e. the turning point

r to be the value of r at the
cr o

turning point. These relationships are illustrated in the figure below.
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ign)

r i _ Source
Sun \

To proceed, we define the following quantities:

R = solar radius
e)

Po = ro/Ro

= _<ePo (-) Po for 0o cr

= >@Po (+) Po for @o- cr

Per = rcr/Re

Pi = ri/R®

9 (-) = @ for @ <@
0 0 O-- cr

@ (+) = @ for @ _>0 •
o o o cr

With these definitions we may integrate equation (2.1 9) to obtain an

explicit quadrature representation of the ray trajectories:

I Pi C_°o

@ (-)(Po) Z Z I/Z

o I _°p° 1)

J Po Po _%/_n __

(z. zo)
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eo(+)LOo) = e cr +

J

Po

dP o

#oZPo z , } i/2P°h/_iZPiZ sinZ @i - I
k.

Pcr

(2.21)

where we have implicitly used the initial condition that 6) (-) = 0
O

po (-) = p i. The value of 8 may be similarly found to be
cr

Pi dPo

8 = 2 2

cr / n/"oP o

J _Ol/_iZpi2 sinZ 99i
Pcr

i/2

where Pcr is determined by noting that at the ray turning point

is zero which implies, by equation (2.19), that

when

(2.22)

dr
o

39-
0

2 2 = _iZPi z 2_o (rcr) Pcr sin 99i (2.23)

which may be construed as an equation determining Pcr (or rcr).

Thus equations (2.20)-(2.23) determine completely the set of ray

trajectories in the plane q9 = _t/2 once _o(r) is specified. In general

it will be impossible to carry out the necessary integrations explicitly,

and one must resort to numerical techniques; it is this kind of calcu-

lation that has been discussed by Jaeger and Westfold (1950) and by

Bracewell and Preston (1956). We shall pursue some numerical

calculations later in this chapter.
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It is easy to demonstrate that the ray trajectories are symmet-

rical about the line @= @
cr

Equations (2.20) and (2.22) may be

combined to give

(-)
Po

Ocr-eo(-) = j" ( )

Pcr

(2.24)

while equation (2.21) is

p (+)

P
er

( ) . (2.25)

It is clear that if (-) = po (+)PO then

o (+)-O = O -O (-) (2.26)
o cr cr o

proving the desired symmetry.

This symmetry about the line 0 = @cr will facilitate calcula-

tion of the net angle, _b , through which a ray turns upon traversing

the corona. For simplicity we shall consider the source of radiation

to lie sufficiently far from the sun that no ray curvature occurs beyond

that point; this is a useful assumption for sources of interest to us,

but it must be pointed out that it is violate for calculations of radia-

tion originating within the corona itself. Consider the geometry

below
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ray \ _ e =8 cr

asympt°tes/'_", NN_ /

Sun
source

In drawing the figure the demonstrated symmetry about the 8 = 8
cr

line has been utilized in constructing the two ray asymptotes to inter-

sect the O = 8cr line at the same point. Now, from the figure it is

clear that

¢+¢Pi = 6

cr

:

(2.27)

But symmetry about 8 = 8 implies thatcr

Equations (2.27a) and (2.27b) yield for the ray turning angle, _ :

(2.28)

= Y - 2(_i +ecr) " (2.29)
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The actual evaluation of the effects due to ray curvature must

generally be executed by a machine calculation based on equations

(2.22), (2.23}, and (2.29). However, it has been shown by Bracewell

and Preston (1956} that in the limit of a nearly linear ray a simple

formula for _ may be obtained anayltically. First, let us specify what

we mean by a "nearly linear ray. " Since the ray geometry depends on

the properties of the coronal medium at the ray itself it is clear that a

useful approximation to a ray trajectory necessitates that the coronal

properties at the approximate ray differ only slightly from those at the

actual ray. We thus require that the maximum offset distance of the

ray from its linear approximation (this maximum offset will occur

near the point of closest approach of the ray to the sun} be much less

than the distance over which some coronal property in which we are

interested (to be denoted by X) changes significantly. This require-

ment may be written

dX
I -a?.]<< I(s-s o) tan ¢ [

for a distant source, and

(s-s° ) tan ---X _-r << 1

for source and observer equidistant from the sun; here (s-s ° ) is the

distance from the observer to the point on the ray closest to the sun.

Since the radial gradient of the inner corona is large this condition is

quite restrictive for most rays.
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Now, following Bracewell and Preston (1956), if the above

conditions are fulfilled and the ray under consideration is nearly linear

we may approximate equation (2.22.) for 6) as
cr

e
cr

"Pi

0
cr

dP o

;'- 1/2

{ooP° P.z z
1 sin _i

which becomes, with the help of equation (Z. 23) with bLi = 1,

6
cr

.,_ -I
-- sin _Do(Pcr )] - _Oi •
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This last expression gives the bulk of the actual value of @cr for

nearly linear rays. We can do better however by writing equation

(2.2Z) without approximation as

Pi

i([ Ie z 2 1/2
cr _o Po 2 - i]

Pcr ['[_iZpi2 sin _i

2 1/

[Oo 1p.2 .2 -I
i sm ¢Pi

dP o

+ sin-l_uDo(Pcr)J-_i "

The integral above is small and has been evaluated approximately ;

the result is

@cr _ - ¢i - q[- Pcr
Pcr

Inserting this into (2. 29) we obtain for the ray turning angle

d o)
--__--Pcr _ P

cr

If we take the refractive index to be specified by

2

2 UJlO 2 2n

/_ = 1- _ ; _p _ i/p

where 0¢p is the plasma frequency and _ the (angular) frequency of

the radiation, and note that for the nearly linear rays considered

_o(Pcr ) will be close to unity, we may then obtain
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_ n--_- (2.30)

"_ Pcr

This essentially completes the analytical description of the

determination of the ray trajectories lying in the plane _ = 9/2 of a

spherically symmetric solar corona. In Chapter IIl we will use these

rays as the basis of a perturbation solution of scattering, and it will

therefore be of value to consider them numerically. Before doing so,

however, we first wish to present a number of equations, which we

shall find useful later, pertaining to the rays in a spherically symmet-

ric corona. We begin with equations (2.10) and (2. ll), which were

obtained under only the assumption of sphericity, for rays in the plane

_ =_/2. Ifwemultiply(Z. 10) bycose o , and(Z, ll)bysin0 ° , and

add the resultant equations, we obtain, after some simplification,

dr d0 ° . 2
d_o_ d {"o o} (--d_-) • (2.31)-d_ - _ _ -Uoro

Expanding the right-hand side, and noting that for the spherically

symmetric corona under consideration

dD o _ dD o dr o

-aN- --d-F 7F6-

we obtain

dZro = d6nUo Z dOohZ
(2.32)

where equation (Z. 17) has been used. Having thus obtained an explicit
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expression for dZro/ds 2 , it is also of value to explicitly determine

d2O /ds 2 ," formally expanding equation (2.12) gives immediately
0

dZO dO
O = O

d _ _,n )](Doro z (2.33)

The single remaining quantity we wish to calculate is the cur-

vature, to be denoted by K ° , of the rays. If we let x ° and Yo denote

the x and y coordinates of a ray for the spherically symmetric case,

the curvature is given by (see, for example, Thomas, "Calculus and

Analytic Geometry, " Addison-Wesley (1960), §12-6)

dx dgyo o
K = o _ dYo d2x

o -d_ ds _ --_[s ds _ "
(2.34)

Letting

x = r cos e
0 0 0

Yo r ° sin 0o
(2.35)

and inserting these into equation (2.34) gives, after simplification in-

volving use of equations (2.31)-(2.33),

r o d0 o dD o

K° /_o _
(2.36)

We shall pursue these relationships no further. Let it simply

be said that the results of equations (2.31)-(2.36) will prove to be of

value in subsequent chapters.
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Propagation in a Plasma: The Refractive Index

It is our purpose in this section to first discuss the validity

of the ray treatment for the propagation of an electromagnetic signal

through the interplanetary plasma, and to then derive,for an appro-

priate model of the coronal plasma, a suitable expression for the

refractive index of the (high frequency) waves of interest to us here.

The proper description of the propagation of a wave through a

non-homogeneous medium must in general rest upon solution of a wave

equation. If, however, the wave number k = 2_/k (k is the wavelength)

varies slowly over distances on the order of a wavelength one may then

employ a WKB approximation for the solution to the wave equation; it

is the _rKB solution that yields the ray trajectories. The validity

criteria for such a description are:

d2k

(2.37)

In terms of the refractive index equations (2.37) become:

lid,I-Z HT ko << 2Y

0

(2.38)
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where here k ° is the wavelength in free space. Now we shall show

below that for the coronal plasma the refractive index may be expected

to become zero when u_2 = _¢ Z., a refractive index of zero will in general
P

lead to violation of conditions (2.38}, thus requiring a proper wave

description in the vicinity of 2 = 0. This restriction on the validity

of the ray analysis is a weak one, however, for if we evaluate equations

(2.38) near _ = 0 for a refractive index given by

2
2

=1 --2 T

we obtain for the worst case of ds = dr

k

_3 >> _![-_n-r-° (2.39)

where here (n) refers to the exponent in an assumed power law depend-

ence for the electron density:

1
n(r) _ ---

n
r

Since we expect (r) in (2.39) to be at least R o, and X ° to be on the

order of meters, we see that equations (2.38) represent very weak

restrictions indeed. Only problems dealing with the reflection of

2
radar pulses from coronal layers where _ = 0 will encounter diffi-

culty in this regard; this problem will not concern us here, however.

We turn now to discuss whence the expression above for the

refractive index arises, and the conditions for its validity. We begin

with Maxwell's equation, using Gaussian units:
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= 4YPc

V • B = 0

"* 1 8B (Z. 40)
V x E = -K_ i-

c c 8t

where E and B are the electric and magnetic field vectors, respective-

ly, (pc) is the charge density, _ is the current vector and (c) the speed

of light. Equations (Z. 40) automatically satisfy charge conservation:

8P c
-- + V • J" = 0 (Z.41)
8t

If all quantities are now considered to vary as exp [i (k • r - oct)] we

obtain

i_. _: 4_. _,
60

k B = 0

"*k x E'* : Kw g (2.4Z)

-,0

ocPc _ _ E

where (r is the conductivity tensor

%--&._

- Eliminating B from equations {Z, 42) yields

(Z. 43)
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-* -* -* 02 2
k x (kxE) + (_) K" _ = 0 (2.44)

where we have defined:

The requirement that the set of equations (2.44) be soluble leads to a

dispersion relation. But we must first specify a .

The conductivity tensor a represents the motional response to

an electric field of charged particles in the medium. To obtain this

response we examine the equation of motion for an electron, the species

which we assume to carry the bulk of the current:

dv v "4 _
m_I [ = -e[_ +-c x (B 0 +B)] - umv (2.46)

where (m) is the elec,tron mass, (e) the electron charge (magnitude),

(v) the electron collision frequency, B 0 the externally applied magnetic

field, and v the (induced) electron velocity. Fourier analysing (2.46)

yields

"* -eE
v =

m(v - io¢)

or

2

= e n I (2.47)
m]v - i02)

If we insert (2.47) into (2.45) we obtain:



29

With this expression the solubility condition on Equation (2.44)

yields:

2

_Z : 1 - z P u

(I + i_ )

(2.49)

The collision frequency (u) has been given by Smerd and Westfold

(1949) to be

n (z.50)
u =42_

where (T) is the electron temperature (OK) and (n) is here the number

density (cm-3). If we take T = 106°K and n = 108 cm -3 we obtain

-i
u = 4 sec demonstrating that for the frequencies of interest we may

write (Z. 49) as:

2

U_p (2.51)
Z

=I ---Z

(The collision frequency will, however, be important in producing

collisional absorption of a wave. ) Equation (2.51) represents the re-

fractive index we shall use in this work. Its validity is subject to a

number of assumptions, which we discuss now.

We note first that we have neglected the effects of the magnetic

,,,@

fields on the induced velocity (v). Neglect of the wave magnetic field

,,@

(B) may be shown to imply

<< Vph (z.sz)

where Vph is the signal phase velocity.
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>c we expect inequality (2.52)Since equation (2. 51) yields Vph-

to be satisfied for sufficiently weak signals. If (S) is the signal power

flow (watts/m 2) we may show that condition (2.52) is, for Vph = c,

S << 2.5 x 10 .7 f2 (2.53)

where (f) is the signal frequency. For (f) on the order of megacycles

we expect satisfaction of (2.53). Neglect of the external magnetic field

B 0 represents a more serious restriction, however. It may be shown,

though, (Allis et al (1963)) that neglect of B 0 is justified as long as

eB0 2
<< _ (2. 54)

m_

If we are in a region of small refractive effects (D = 1 ) condition {2.54)

implies, for a one Gauss field,

f >> 2.8 MHz (2.55)

Condition (2.54) is more difficult to satisfy, however, in regions where

_<i.

We note next that in the derivation of (2.51} we have considered

only electron motions, neglecting those of the much heavier ions. This

assumption will be justified as long as:

eB o
0_>> _ (2.56)

m.
1

where m. is the ion mass; satisfaction of (2.54) guarantees satisfaction
1

of (2.56).
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In the derivation of equation (2.51) we have also neglected the

thermal motions of the electrons. In equation (2.46) for the electron

motion we neglected the variation of E over the path of an electron,

the validity of which requires

VTh << Vph , (2.57)

2 = 2kT is the thermal velocity. For T 10 6 OKwhere VTh _ = we expect

satisfaction of the above.

A non-zero electron temperature can result in other effects,

however. (For a more complete discussion of these points see Allis

et al (1963) and Stix (1962)). An electromagnetic wave may be Landau

damped if there is a sufficient number of electrons present at the phase

speed of the wave to interact appreciably with it. Satisfaction of (2.57)

implies, however, that there should be no appreciable Landau damping;

> c. Perhaps athis conclusion is reinforced when we realize that Vph-

more important effect of a non-zero electron temperature is the intro-

duction of a new wave mode (the electron plasma wave) propagating with

a phase speed on the order of VTh (Bohm and Gross (1949 a, b; 1950)).

This wave will not couple with the electromagnetic wave unless their

phase velocities become equal, a situation which does not occur as long

as condition (2.54) is satisfied (Allis et al (1963)). The final effect of a

non-zero electron temperature which we shall mention is the introduc-

tion of resonance at not only the electron cyclotron frequency, but also

at the harmonics of the electron cyclotron frequency. These resonances

result in an absorption of the signal. The resonant absorption at the
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harmonics of the electron cyclotron frequency is generally small, and

it may be shown (Stix (1962)) that although absorption at the cyclotron

frequency can be strong, the width of the resonance line for a 106 OK

plasma will be only some 50 KHz if the magnetic field strength is 1 Gauss.

Thus if (2.54) is satisfied we should not expect to see cyclotron absorp-

tion.

Having thus described in some detail the conditions upon which

rests the validity of the ray analysis, and having presented an appro-

priate expression for the coronal refractive index, we turn now to a

brief conside ration of coronal collisional absorption.

Absorption

In order to adequately discuss coronal absorption we need only

specify the radial distribution of electron density and temperature for

the corona. Following many other authors we choose the Allen-Baumbach

formula for the electron density

2.99] -3
n(p) = 108F 11 55 + p-_I6-_]cmL

(Baumbach (1937), Allen (1 947)) but we shall add to this an additional

term corresponding to the theoretical results of Parker (1 958; 1960 a, b)

and the results of solar probe measurements near 1 AU. Thus, as sug-

gested by Harrington (1965) we shall use for the corona (P > 1.03)

z. 99q 106
n (p): IO8F 1.5s + p-_F6--_l+o L7 7

(z.58)
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This expression is valid only for the coronal regions, and is signifi-

cantly in error for the chromospheric and photospheric regions where

the densities are considerably higher than those given by equation (2.58).

As the top of the chromosphere is generally considered to be at p = I. 03

(see, for example, Brandt and Hodge, "Solar System Astrophysics, "

McGraw-Hill (1964), page 99) equation (2.58) will be considered correct

only for p > 1.03. However, as the radio propagation phenomena to be

described in this work will be limited to only those rays lying wholly in

the corona, we shall use equation (2.58) without corrections for the

chromosphere.

For the electron temperature we shall assume a constant repre-

sentative value of 106 OK. Actually, the coronal temperature is probably

constant out to only 3-4 R e (Brandt and Hodge, "Solar System Astro-

physics, " McGraw-Hill (1964), page ll0) but since the temperature will

be used only in the evaluation of absorption, and since by far most of the

absorption occurs within 3 R e, we will regard this neglect of the spatial

variation of temperature as justified.

The absorption may be calculated as follows. If we define an

optical depth r as the integral along a ray of the absorption coefficient

, that is

r
r = .I K ds

path

then it is easily shown (see, for example, Shklovsky, "Cosmic Radio

Waves," Harvard University Press (1960), pages 141-142) that the

intensity of a signal after having traversed the absorbing medium is
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-T The coefficiente times its initial intensity, absorption

shown to be (ibid., pages 144-145)

may be

Z

w/_c

as long as

Z 4
Y << l_
-2

a condition fulfilled in the present calculation. We have numerically

evaluated e -r for rays in the model corona specified by equation (Z. 58);

for this specific model we denote r as T . The results of the calcula-o

tion are displayed in Graphs 1 and Z. We conclude that above 50 MHz

absorption is not important for rays with _i > " 40, or Pi sin _i > 1.4.

Thus rays appearing to an observer to originate outside of a region

about the sun with radius 1.4 R e may be expected to be not appreciably

absorbed, whereas rays appearing to originate within that region should

suffer appreciable absorption.

Collisionless absorption has not been considered, for, as we

have argued in the previous section, Landau damping should not be

> c, while if eBo/mUJ<<_ 2 weimportant for T = 106 OK and Vph
do

not expect to see resonant cyclotron absorption. Furthermore, we

point out that anomalously high collisional absorption near resonances

{_ = _) will not occur in this model, in virtue of the form of the refrac-

tive index given by equation (Z. 51 ).
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Summary

In this chapter it has been our task to establish a basic set of

equations allowing description of radio rays in a medium of arbitrary

refractive index. We proceeded then to restrict discussion of these

equations to the specific case of spherical symmetry. We then dis-

cussed in some detail the validity of the ray analysis and the refractive

index we shall use in this work. We shall see in the next chapter that

the rays discussed in this chapter will form the basis of perturbation

solution of scattering.



36

CHAPTER III

Quadrature Solutions for Scattering

Introduction

In the present chapter we seek to obtain, via a first order per-

turbation analysis, general quadrature solutions for rays scattered by

a random medium.

Basic Equations

Equations (Z. 3)-(2.5) are general equations for the behavior of

rays in a medium of arbitrary refractive index, /_(r). They may be

solved in principle to give the ray coordinates r, 8, and _ as functions

of the arc length, s, along the ray, if one is given some appropriate

initial conditions (tantamount to r i and _i of Chapter II) and if the re-

fractive index _(r) is known. For a turbulent medium, however, it will

.,@

be impossible to specify D(r) exactly; only its statistical properties may

be regarded as known. Direct utilization of equations (Z. 3)-(2.5) is thus
.,@

impossible; as we are unable to specify _(r) exactly we cannot solve

them numerically, while the very form of the set (non-linear, coupled)

precludes obtaining quadrature solutions for r, O, and _ as functions

of s and _.

However, it will be usually possible to specify a local average

of the refractive index, to be denoted by _o(r), about which occur tur-

bulent fluctuations. If we denote this Iatter component by 5_(r) we

may write

.,@ -.@ .,@

/_(r)= _o(r) + 6H(r) (3. i)
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in which the first term on the right hand side represents the known

average component and the second term represents the fluctuating com-

ponent, known only in a statistical sense, of the refractive index field.

If we let angular brackets, < >, represent an ensemble average (or a

time average, if coronal processes are ergodic) we clearly have

<_(r)> = _o(r)

< 6_(r) > = 0 .
(3.2)

fore write

/_o(r) = /_o(r) . (3.3)

Having thus split the refractive index field into an average com-

ponent and a fluctuating component, it seems natural to similarly divide

the ray coordinates into average and fluctuating components. We there-

r(s) = ro(S) + 6r(s)

O(s) = Oo(S) + 6O(s)

_(s) = _o(S) + 6V(s)

where s again refers to the arc length along the ray. Here ro(S),

Oo(S), and @o(S) are those ray coordinates which would be obtained

if the fluctuating component, 5/_, of the refractive index were identi-

cally zero; they are thus those values of r, 8, and _ which would be

(3.4)

We have thus far said nothing about the form of bLo(r). However,

it behooves us for the sake of simplicity to consider, as in Chapter II, a

spherically symmetric average corona in which _o is a function only of

distance from the sun's center, i.e.
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obtained from equations (2.3)-(2.5) were we to use _(r) = Uo(r). On

the other hand, 5r(s), 68(s), and 5_(s) are the portions of the ray

coordinates which are induced by the statistical component of the re-

fractive index, and are themselves therefore fluctuating statistical

quantities.

Following Chapter II, if we assume spherical symmetry (equa-

tion (3.3)) we may for convenience in equation (3.4} let

 o(S) = =/z . (3.s)

The set of all rays lying in this plane, it will be remembered, repre-

sents the set of all possible ray geometries, and we suffer no loss in

generality by considering only rays in the single plane _o = y/Z.

Equations (3.4) may be interpreted as follows. We may regard

-,0

5_(r} as a statistical perturbation about some average refractive index

field, _o(r), and then 5r(s), 58(s), and Sop(s) are the corresponding

perturbations of the ray components about some average ray given by

ro(S) and 8o(S); these components have been discussed in Chapter II.

Thus we may regard the average rays, about which we are perturbing,

as well defined. There is, however, a subtle point, which may have

already occurred to the reader. In equations (3.4) the argument of the

left hand side is the arc length along the perturbed ray; this is also the

argument of r ° and 8 ° on the right hand side. However, in our cal-

culations in Chapter II of ro(S) and eo(S) the argument there referred

to the arc length along the average, unperturbed ray. Thus the argu-

ments of ro(S) and 8o(S) used in Chapter II and here are different,

and the relevancy of the calculations of Chapter II to the present
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analysis becomes obscured. If, however, the perturbation quantities

6r(s), 6e(s), and 6_(s) are small, so that a perturbed ray at all times

lies close to its corresponding average unperturbed ray, the two arc

lengths in question will be approximately equal, and the calculations

of Chapter II and the present chapter regain their compatibility. In

what follows we shall indeed treat the perturbation quantities 6it, 6 r,

68, and 6@ as small, and we shall limit ourselves to a first order

analysis. In that case, as shall be shown below, the arc lengths of

both the average and perturbed rays are, to first order, the same,

thus insuring compatibility of the work of Chapter II with the scattering

computations to follow.

Let us begin. Inserting equations (3. i), (3.3), and (3.4) into

equations (2.3)-(2.5) for the ray trajectories, and dropping all terms

of second order in 6it, 6r, 6e, 6_, and their derivatives, we obtain

the following three equations for the perturbation ray coordinates:

}_- _o cos e° o o _ ttoro o- _t sin{) o + cos 6) -ds-) 6@

( dr° sin8 _s°) 6it - (_o r+ cos 6)0 _ - r° o o sin 8o) d6e--d_

de o " c_ o

- (_0 sineo--d_-) 6r} +<--d-_- sin8o) 68 =

cos 6) a6tt sin 8° 86it
o 8r r 8-F- (3.6)

o
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dr de

d { sine )_sr +<_o cose o. sine o) 6e_[s (_o o o _ - _oro o -_

( (. )dr° + r cos e 6_ + cos e°
+ sin e° -_ o o -d_-/ oro

+
d_ 0 . c_ 0cos o=) ( cos o):

cos e
05_ + o 05_

sin e0 _ r 8-@ (3.7)

d_ o I aS_ (3.8)
r 0 -_- .

In these equations terms of zeroth order in the perturbation quantities

have been eliminated in virtue of equations (2.10) and (2.11). The first

and second of the above three equations are linear, second order,

coupled differential equations for 5 r(s) and 6e (s), driven by the per-

turbation refractive index field. The third is a linear second order

differential equation for 5_(s), driven by the perturbation refractive

index field.

As written in equations (3.6)-(3.8) the driving terms appear as

-,D

functions of r , whereas all other variables are to be construed as

functions of s alone; the question arises as to where we are to evalu-

ate the terms in 5_. Strictly speaking, the evaluation is to be along

the perturbed ray, but as we do not yet know where this is, we must

,-0

find another procedure. What we do is to divide 5_(r) into two parts;

introducing a change in notation:
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duo
8_(r) " 8_ + _ 8r. (3. 9)

The first term on the right hand side represents fluctuations in the re-

fractive index of the medium which may to first order be evaluated along

the basic ray. The second term represents the change in refractive

index seen by an observer on the perturbed ray due to displacements of

duo
that ray in the non-uniform average corona; the value of T may,

again to first order, be evaluated alon G the basic ra_r. Equation (3.9)

.,@

is correct to first order and represents the proper evaluation of 8D(r)

duo
in (3.6)-(3.8). The contribution of the _ 8r term will be zero in

_5_
the equation for 84, as there only _ appears, and

i, 86D + 6r dy °86D

2rd 

duo
We shall see, however, that the _ 8 r term is important in the

equations for 6r(s) and 68(s).

In summary, we restate the assumptions that have been used

in deriving equations (3.6)-(3.8). We have been throughout this discus-

sion working with radio rays, the adequacy of which has been discussed

in Chapter I. In addition, two other assumptions have thus far been

made. We have taken the local average corona, about which occur

statistical fluctuations, to be spherically symmetric and consequently

the basic rays are taken to be those determined by this spherically

symmetric corona. This assumption seems quite good indeed around

sunspot maximum, but becomes less so near sunspot minimum. In

the latter event the departure from spherical symmetry seems small
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enough that basic rays calculated on the basis of spherical symmetry

are probably quite valid indeed; however, the departure from spheri-

cal symmetry will manifest itself as an asphericity in the strength of

scattering in the corona. It appears, therefore, that calculations of

scattering about basic rays which have been derived on the basis of

spherical symmetry will not be far in error if the asphericity is con-

sidered to manifest itself only in the terms in 5bL(r) (the driving terms)

in equations (3.6)-(3.8). In any event, it is the purpose of this discus-

sion to probe the effects of overall refraction and anisotropic turbulence

in the corona, and a detailed discussion of asphericity will only serve

to cloud the issue. Finally, we have assumed the statistical departures

from the average configuration to be sufficiently small to permit use

of a first-order theory; as the scattering of radio astronomical sources

has been found not to exceed one or two degrees this may be regarded

as a valid assumption.

The Equation for 6_(s)

Equation (3.8) for 5_(s) is the simplest of our three basic

equations and will be treated first. We had

d_o 1 a6_
d {"o _s (ro6_)} -d-F" 6@ =-- " (3.10)- r

O

This is an in_homogeneous linear, second order ordinary differential

86D refer to the basic
equation for 6@(s); its coefficients as well as

ray and are thus implicitly known functions of s.

The general solution to such an equation will be of the form

6_ = 6¢ph + 6¢pp (3.11)
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where 6_ h is the general solution of the associated homogeneous

equation and 6_p is some particular solution of the complete equation.

The homogeneous solution itself will be of the form

6_ h = cI 6@hl + c26@h2 (3.12)

where 6_hl and 6@h2 are the two independent solutions to the homo-

geneous equation associated with equation (3. I0), and cI and c2 are

constants chosen to satisfy the initial conditions. Now, it is a property

of such an equation that once one of the homogeneous solutions, say

6@hl , is found both the second homogeneous solution, 6@h2, and the

particular solution, 6@p, may be found in direct fashion by the method

of variation of Parameters (see, for example, Morse and Feshbach,

"Methods of Theoretical Physics, " McGraw-Hill (I953), § 5.2). Thus

equation (3. i0) may be considered solved once one of the homogeneous

solutions has been found.

The homogeneous equation associated with (3. i0) is

o
d {"o _s (ro6@h)) -d-r- 6@h- = o. (3.13)

Its solution may be readily obtained if we note that by having let the

_6_
driving term, -_ , of equation (3. i0) go to zero we have obtained

nothing more than an equation for rays in an unperturbed average

corona specified by _o(r). Thus 6_0h is simply the angular displace-

ment from the initial ray of some other ray which is also determined

by _o(r) and which lies close to the initial ray in question. As a

simple specific case consider a ray which originates at the same
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point (r i) as the initial ray and with the same orientation (_i) in the

plane of the initial ray but with a component out of that plane, i.e.

initial

ray

new

ray

_i source

e=O

Now, if we can for this simple geometry obtain an expression for

6_h(S) we will have obtained 6_0hl and thus essentially solved equa-

tion (3. I0). But this is easy, for it is clear from the above figure

that if the new ray lies very close to the initial ray, as it must for
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a first order analysis, it can be generated simply by rotating the initial

ray by some small angle ¢ about the source-sun line. Consider the

geometry of the initial ray:

_ initial ray

ro ¢Pi
E

Sun 1 _ _

It is clear that the displacement of the rotated initial ray perpendicular

to the plane is, if c is small,

r o = sin 06_°hl ro o "

If we ignore the c in the above equation we get

6_hl(S) = sine ° . (3.14)

This can be verified by insertion into the homogeneous equation, (3. 13):

_o r° sinO ° - _ sin 80 = O. (3.15)

This is, however, exactly equation (2. II), thus verifying (3.14).
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Equation (3.14) may be immediately used to find, via the method

of variation of parameters, 6_h2 to be

6_hg(S ) = cOS8o " (3.16)

This may be checked by insertion into equation (3.13):

dD o ?
d L_- cls\ /J_uod(roC°SOo_-'-d_C°S8 = 0 (3 17)_[_ o "

which is exactly equation (Z. 10), thus verifying (3.16).

In virtue of equation (3. lZ) the general homogeneous solution

to the equation for 5_(s) may be written as

= + c2 cos O .5_h(S) c 1 sin 8 ° o
(3.1s)

The Wronskian of the two homogeneous solutions is

A

6_hl (s) 6_hz(s)

d6(_hl(s) d6(Phz(S)

ds ds

dOo(S)
- _ (3. 19)

thus verifying that the two solutions are independent, as

d8
o

is never

zero (except in the degenerate case 8o = 0, which is of no concern to

us he re).

To obtain the particular solution, 6_p, it is convenient to put

equation (3.10) into standard form. This may be done in straight-

forward fashion, and we obtain
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2

d26_o + d
6_

= 1 a6.

"oro

c_ o

where equation (2.30) has been used to eliminate "-d-F "

of variation of parameters then gives immediately

5_p -C" sin0 ° cos 8 °

(3.2o)

The method

- cos O° _ 86_ sin Oo ds }
(3.21)

where C is a constant specifying about which of the basic rays the

s catte ring oc curs:

dO
2 o

C = Doro _ = Diri sinai (3.22)

in virtue of equation (2.16) 6@p as given in (3.21) may be checked

by insertion into equation (3.10). The procedure is somewhat tedious

and will not be presented here; suffice it to say that equation (3.21)

has indeed been verified as correct in this manner.

The complete general solution for 6_p(s) may be found therefore

to be (equations (3.11), (3.12), (3.14), (3.16) and (3.21)):

6@(s) = c 1 sin 0o(S ) + c 2 cos 0o(S)

sin Oo(S) s

j" (-_)' cosO (s')ds'
+ C o o (3.23)

cosCo(S)
C \-_---/ sin 00

0

(s') ds'
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where the prime merely denotes a dummy variable of integration.

may be put in somewhat more compact form as

This

5_(s) = cI sin 8o(S) + cz cos 8o(S)

+

_f

o
sin(8 ° - 8o') ds'

(3.z4)

The lower limit of integration, s = 0, refers to the source.

The values of c I and c z in equation (3. Z4) may be ascertained

by considering boundary conditions on 6_(s). In all cases we shall

consider the ray to "leave" the source in unperturbed fashion so that

5_(s = 0) = 0

d60h
--4_] = 0

S=0

(3.zs)

Taking 8o(S = 0) = 0

c I cZ

we then obtain from (3.24)

= 0 (3.Z6)

Thus we obtain finally

= ') ds'
6_(S) -C- o sin - 80 .

d

(3.z7)

To summarize, equation (3. Z7) is the general solution for the

scattering parameter 5_(s) of a ray traversing a spherically symmet-

ric average corona about which occur (small) statistical fluctuations.

Its validity is limited only by the validity of the following assumptions:

i) applicability of a ray analysis
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ii) spherical symmetry: _o = _o (r)

iii) applicability of a first order treatment

iv) the initial conditions of equation (3.25).

We turn now to a consideration of equations (3.6) and (3.7), for

5r(s) and 68(s).

The Equations for 6r(s) and 68(s)

Equations (3.6) and (3.7) are linear, second order, ordinary

differential equations for the scattering parameters 6 r(s) and 60 (s).

They are coupled and must be treated together. We had:

d ((Do cos 80) d6r_ (Dor sin8o)d68ag o -4g-

d ro d e°
- <_o sin 8o _ + _oro cos 8o --_[_j 6{)

d00 .

-(_o sin 80 --_) 6r (3.28)

d00 -
dr°- sin{) _)6_}+ (cos O° _ r ° o

+ (d_o ) _r _ sineo 86__ sin0 ° 68 = cos O° r -6B-
o
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d (.o +("oro -d_o 8s o

dr 0 d e 0
+ ("o cos 6)o -6_ - "oro sin 8 ° -d_/ 68

d80 .
+(.o cOSSo-d_-) 6r (3.Z9)

dO

( _dr° +r cosO °>6.}+
sineo us o o--d_

cos e

( d_° ) 60 = sin8 86. + o 86.-d-F cos Oo o _ r T
0

It is to be remembered (see equation (3.9) and corresponding discus-

sion) that here 6, is to be evaluated along the perturbed ray; it has

not yet been divided into the two parts of equation (3.9).

We begin by simplifying equations (3. Z8) and (3. Z9) as follows:

If we multiply (3.Z8) by cos O° and (3.29) by sinO ° , and add the re-

sultant equations we obtain

dr

d {. [d6r dOo 6el+ osD }_I_ o -'_- ro _

dO dr dO o ,
-__ {(.oro)_sO +(.o-d_)68 +(it 0 "-d_)6r

+(r ° d8o)6 .} = 86.d--_ 8r (3.30)

Similarly, if we multiply equation (3. Z8) by (- sin 8
0

cos Oo , and add the resultant equations we obtain

) and (3. Z9) by
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_o ro-_ ] ( }dr° 6@ + o 6r + r °-_- -dN- -a-g- ] 6_

dSo {_Zod6r d%, dr+-d_ -5_- (_oro-d_-) 6e +-d_ 6u} (3.31)

d_o = 1 86_I
--dT-68 _-_8-

0

We now make use of the duopartite division of 6bL

equation (3.9):

effected by

c_ o

6_ -* 6_ + --d-FOr (3.32)

where the left hand side implies evaluation along the perturbed ray,

and the right hand side is to be evaluated along the basic ray. This

division of the "complete" 6_z (left hand side) into the two parts of the

right hand side is correct to first order. From expression (3.32) may

immediately be derived the following useful expressions, also valid to

first order:

86_z 86D (3.33)
a--O- "

86_ dZ_o

" --_r_. + 7 6r (3.34)

d6_ . 86_ dro + 86_ d8o

a-7- -d-h- -_9- -d_-

dZDo dr
d_o d6r + o 6r

+ -d-F- -dY- d--_2-r -d_

(3.35)
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where we have used the fact that to first order along the basic ray

we have

dr dO
d = o 8 + o 8 (3.36)
_I_ -dY ar _ Y_ .

Once again, the right hand sides of equations (3.33)-(3.35) are to be

evaluated along the basic ray.

Now, if relations (3.32)-(3.35) are inserted into equations (3.30)

and (3.31) we obtain the following:

2

d {_o_sr } d_° dr°_ d6r - dO o-

+

d0 ° , dr d0 °
(2 btor ° -d_-) d68 = o a6_-ds- - ( _ -ds--]_ (3.37)

2

_toro k-d'{-] a'r[_oo (Sit +--d-F 5

d (tioro --d-_jd68_ + (tt o --d_/dr°_ --d_d68

dO° [-2 d/J'° dO° '_
o--d-r-]-_sr +_s (.o--d_] 6 (3.38)+ --d_ h tto+r r

dr°h z [ cl_° 5r) ]86_ dOo dro 8 1 (6bL +
= _o ('-d_] 8-O-'-ttoro--d_ "d-_ _-_ _ "-d'F

where we have in carrying out some simplifying expansions used such

relations as (2.16), (2.17), (2.30), (2.32) and (2.33). In equations (3.37)

and (3.38), and in what follows, 6it is to be evaluated along the appropri-

ate basic ray.
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We now observe a very useful fact. If we multiply equation
dr O h d @oh

(3.37) by (--_/ and equation (3.38) by (r° -d_-/' and add the result-

ant equations we obtain

No dr°'_ d25 r +
--a-g-J

c_ O _ droh 2 deo. Z
{I_L1 + (-dS-] ]+ 2_oro (-_) _ d6r

+ L-EE ro aT o -BE) ]6r + (.oro

L/roZ _d8° cI_°_dr__h/ 460 =+
--dF{ 0 (3.39)

The driving terms have identically vanished! This implies that the

system posses a "constant of motion" which it is our task to find. We

begin by recalling the discussion in the second section of this chapter,

where it was noted that the present analysis required the arc lengths

of both the perturbed and basic rays to be very nearly the same; in fact,

in a sense our analysis has required them to be identical. Thus it occurs

to us that the ray arc length might be our constant of motion. Now, for

rays lying near the plane

length, ds:

(ds)2 = (dr)2

_o = 11'/2 we write for the element of ray arc

+ rZ(de) 2 + rZ(d_) 2 (3.40)

Inserting equations (3.4) we obtain

= + d6r) 2 + +6r) z (d8(ds)2 (dro (r° o

+ (ro+ 6r) 2 (d6_) 2

+ d6e )Z

(3.41)
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which to first order is

(ds)2 = (dro)2 d6r + r 2 (d0o)Z+ Z dr ° o

+2 ro2 d0od60 + 2 ro(d0o)Z6r . (3.42)

As the element of arc length along the basic ray is given by

(dSo)2 = (dro)z + ro2 (d8o)2 (3.43)

The difference between the arc length element on the perturbed ray

and that on the basic ray is clearly

A (ds)2 = (ds)2 _ (dso)Z = 2 drod6r

+Z roz d0od68 + 2 ro(d8o )z 6r (3.44)

But, for the reasons stated above, we expect A(ds) z to be zero, and

we therefore guess that our "constant" of motion is

= 2 dOo d60 _d0o 2 ?
dr° d6r+r +r ( ) rE(s) --d_ _ o _ _ o --d_ 6 = 0. (3.45)

This must yet be verified.

Now, it is easy to show that equation (3.39) may be written as

or

_-_ DoE +_ E = 0 (3.46)

dE(s) +z
a's _o

E = 0 . (3.47)

The latter equation is immediately solved to give:

C

E(s) = o (3.48)
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where c o is a constant of integration. It may be evaluated if we ira-

pose the boundary conditions (as in the discussion of 5_(s) ) that a ray

"leaves" the source in unperturbed fashion, so that

5 r(s=O) = 0

:o
S =0

50 (s=O) = o

d58_ = 0
--d_]

S =0

(3.49)

If equations (3.49) are inserted into (3.45) and (3.48) we obtain imme-

diately c o 0. Thus E(s) = 0 is the proper solution to equation (3.39)

and we have as our constant of motion

2
2 dO dSO (dOo_

dro dSr + r o + r _,) 5r = 0 (3 50)-d_-- T o '-_ h-_" o _ • "

Thus we have proven that

A (ds) 2 = 0

i. e., that to first order the ray arc length remains constant under per-

turbation. This fact is useful for several reasons. Besides helping us

to solve our equations it also tells us what we mean by a point on a

perturbed ray "corresponding to" a point on its basic ray. Since the

arc length is a conserved quantity we mean simply that corresponding

points are points of equal (s). This fact will become useful later in

our discussion of phase shifts.

Now, in equation (3.37) the only term involving 50

derivative, dS0/ds. But equation (3.50) allowsus to write

is its first

dS@/ds only
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in terms of 5r. Thus if we use equation (3.50) to eliminate dSO/ds

from equation (3.37) we are left with an equation for 5r alone:

dr( d_o 1)d6rdZSr +2 o 1 +

d-ls

d8o. 2 1 ClDo

+ (-d_) [1- roZ_r(_oo "-dY-)]6r

d{)o" 2 (6,tt_ dro d@o 8(6D/_o)

(3.51)

This is an in_homogeneous, linear, second order ordinary differential

equation for 5r(s); its coefficients, as well as the terms in 5_, refer

to the basic ray and are thus implicitly known functions of s. We may

write its solution in the form

= (3.52)
5r(s) c 35rhl + c 45rh2 +Srp

where 6rhl and 6rh2 are the two independent solutions to the homo-

geneous equations associated with (3.51), 6rp is a particular solution

to equation (3.51), and c3 and c4 are constants chosen to satisfy

initial conditions. Once 6rhl is found, 6rh2 and 6rp may be directly

determined by the method of variation of parameters.

6 rhl may be readily found by noting that the homogeneous

version of (3.51) is obtained by letting the terms in 5D be zero; the

homogeneous solutions thus refer to rays in an unperturbed average

corona specified by _o(r). Thus 6r h is simply the radial displace-

ment from the initialray of some other ray which is also determined

by _o(r) and which lies close to the initial ray in question. As a
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simple specific case we will consider a ray which originates at the

same point and lies in the same plane as the initial ray, but which is

specified by a value of _i slightly different than that of the basic ray,

i.e.

basic

_ay new

We may find 8r h for this case, which we shall take as our

recalling equation (Z. 16) for the basic rays:

6 rhl , by

d8
2. o _

goro _ - girl sin¢i " (3.53)

If 6_ i is small a perturbation approach is appropriate and we write

d( 80+ 68 h)
(_o + 6_lh) (ro + 6 rh )2 ds = _iri sin (_i+ 6_i)

which becomes to first order
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d6@h
6 rh_[s + 2 + 6Hh

ro _o

_-s

= cot_i6_i " (3. 54)

As there are no medium changes we shall take in equation (3.54)

d_ o

6Hh = _ 5 r h . (3.55)

If now we use the constant of motion of equation (3.50) to eliminate

d6Oh/dS from (3.54), we obtain

dZr
0

d6r h

dr
O

2
dOoh (3.56)

= Z ( -d-s-J
6 r h - r° cot _idr 6_i

o

-dg

where dgro/dS 2 has been introduced via equation (Z. 32). This is an

inhomogeneous, linear, first order ordinary differential equation for

6r h which may be solved to give

dr° (3.57)

6r h = cot_i6_i _ s - o (-_rSo_2

\-"8g-/

Dropping the irrelevant multiplicative constant we will take the first

homogeneous solution to equation (3.51) to be
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6rhl =dr{0

-d_ S -- s }ds

_ dr ° 2o( )--d-g-

= _ dr ° _s-dg"
o

1 }[1Cdro 2]ds
\ --dg-/

2fdO ° _ 2

ro \--d'_ ] ds

dro)2

(3.58)

Equation (3.58) may be verified by direct substitution into the homo-

geneous form of (3.51). The procedure is too tedious to be presented

here; suffice it to say that equation (3.58) has been verified as correct

in this manner.

Having thus found 6rhl(S), it is a simple matter to find 5rhz(s)

by the method of variation of parameters; we find thereby:

dr
O

6rhz(S) = ds (3.59)

which may be verified directly by insertion into the homogeneous repre-

sentation of equation (3.51).

Thus equations (3.52), (3.58) and (3.59) give the general solu-

tion to the homogeneous equation associated with (3.51) to be

sEdro r 1 dr

5rh(s) = c 3 _ .| 1 - - ds + c 4 o (3.60)

o (dro_ 2
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with a Wronskian

A

6rhl(S) 6rh2(S)

d5 rhl (s) d5 rhz(S )

ds ds

2

2 ( -'d_'/dS°_= r ° (3.61)

Except in the degenerate case of a basic ray directly approaching the

solar center & is never zero, thus verifying that the two homogeneous

solutions are independent.

The particular solution to equation (3. 51) may be found from

5 r hl and 6 r h2 by the method of variation of parameters, and is

S

1dro [( ]( 1)0rpCs,_ _ (_ ds 1
Jo (dr°_'z

k-a-g-]

s

)dr° f6N h 1 1 ds' (3 62)

- "-d-_]\'_oo] ° fdro_ ,z
_o \ -d_]

ds I

where the primes and double primes merely indicate dummy variables

of integration. It has been verified by direct substitution into equation

(3.51); the details will not be presented here.

Equations (3.52), (3.60), and (3.6Z) give the general solution

of equation (3.51) to be
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5 r(s )
= c 4

S

c 3

S S I

0 0

1

/dr°" z ) ds' (3.63)

]< >f85Dh ds" /6D s'

\8--0-] - k o 1 f dro_ , 2 ds'

V-dg7

Having thus found 5r(s) we now proceed to obtain 5O(s). The

system constant of motion (equation (3.50)) is again useful in this re-

gard, for if we use equation (3.63) above to eliminate 5r(s) from (3.50)

we obtain the following elementary equation for 6e(s):

dO0_ dOo

+

S

c_ ds' -

o

s

c4 + c3 faro ,Z

\-d_/

s S /

E/oI< >r dro\ '2

ds v

(3.64)

s

1 fdr°h'2 ds

o \--d_-/

here dZOo/dS 2 has been introduced in virtue of equation (z. 33). This

equation may be integrated directly to give, after much simplification,
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5e(s) = c

S

s/o 1.  o,S'_ (_)o o s,5 _d_°_'_ (--_) as,
\--dg]

S S I

d
e° ds'.'- 1 ds

+ _ fdroh 'z
"-o o iTS-/

S S;

+ ds" - 1 (deo"
J "dr°" g \--_) ds'

o o (__)

(3.65)

This has been checked by direct insertion into equation (3.50), but the

calculation is too tedious to present here.

The constants of integration, c 3, c 4 and c 5, may be evaluated

by imposing on equations (3.63) and (3.65) the first three boundary con-

ditions of (3.49) (the fourth is redundant in virtue of equation (3.50));

they are

= 0 (3.66)
c3 = c4 = c5

Thus we obtain finally

S S !

S S l

[2
S S !

+ -C \_-_-1

ds v,
- 1 1 ,2_/ ds'

droh
--_[_/ (3.67)

ds" - )s'

o ( droh'
\-d%-/

1 2 )ds'
dr o. :

/dO O. '
Z \--d_) ds'

(3.68)
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To summarize, equations (3.67) and (3.68) are general solutions,

in quadrature form, for the scattering parameters 5r(s) and 50(s) for

a ray traversing a spherically symmetric average corona about which

occur (small) statistical fluctuations.

the following assumptions:

i)

ii)

iii)

iv)

Their validity is subject only to

applicability of a ray analysis

spherical symmetry: Uo = _lo(r )

applicability of a first order treatment

the initial conditions of equations (3.49)

The solutions obtained for 5r(s), 50(s) and 55(s) constitute a complete

description of the behavior of a ray as the medium departs from spheri-

cal symmetry. They comprise therefore the very basis of this work.

The Ray Coordinate System

Our attention has thus far been confined to the spherical coor-

dinate system (r,0,_) introduced in Chapter II. For the purposes of

scattering calculations, however, a much more usable and natural

coordinate system is that formed by the basic rays themselves, in

which the displacement of a perturbed ray from its corresponding initial

ray may be specified by two components normal to that ray and by one

component parallel to it. One of the normal displacement components

shall be taken in the plane of the basic ray, and will be called 5_(s);

the other will be taken to be perpendicular to that plane, and is there-

fore simply roSe(s). The displacement component parallel to the basic

ray shall be denoted 5_ (s). Thus
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basic

Y o

Sun

Source

We proceed as follows. The position vector of the basic ray

is written as

: +j r sin0r ° i r ° cos 8 ° o o

where i and j are unit vectors along the x and y axes,

The unit tangent vector to the basic ray, denoted by T o ,

. dro .( dr d0o)To ='-d_" = i cos eo_° _ ro sinOo-c[_-

dr dO o.+_ sin8 o + r cos 8 ___o_
o-a_ o o (is/

(3.69)

respectively.

is given by

(3.70)

..)

and the unit normal vector, N o , to the basic ray is given by (see for

example, Thomas, "Calculus and Analytic Geometry, " Addison-Wesley

(1960), §12.5 =§12.7)
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,,4

NK
O O

dT
= 0 -_

--_- 1

d2r dr de

cosO o _ 2 sin8 o o
o d-_s o --d_ --_

- r cos 0
0 0

r sin 8
O O

d2O ° ,

d2r

" ( o + 2 cos O
+J sinOo d--_s o

dr dO
0 0

-d_- 5_-

(3.71)

dOo, 2

r0 sine 0 <--_) + r0 cos e0

whe re K ° is the basic ray curvature, and is given by equation (2.36).

Now, let us denote by 6r the vector ray displacement, which

is clearly given by

= IT +_ sin eo)5r 5 r cos O°

( " - )+ r o60 - i sinOo + j cos 8o (3.72)

+r 50k
O

where k is a unit vector along the z axis.

N O is 5_(s); thus

The component of 5r along

K oo_(s) : 5r. (NoKo) . (3.73)

If equations (3.71),

we obtain

(3.72) and (2.36) are inserted into equation (3.73)

d 0o. d ro_
5_(s) : (r o_) 5r(s)-(r o--dT] 58(s) . (3.74)
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Similarly, the component of 5r along TO is 6K(s); thus

6×(s) = 6r. _ . (3.7s)
o

If equations (3.70) and (3.72) are inserted into equation (3.75) we obtain

dro_ " 2 dOo"
5X(s) = (--d_' 5r(s)+(r ° --d_)58(s) . (3.76)

Equations (3.74) and (3.76) thus represent the desired set of coordinate

transformations from the spherical coordinate system (r,@,O) to the

natural ray coordinate system (_, ×,0).

Of interest to us also is the determination of the spatial deriva-

tives of 5/_ in the (_, x,O) representation; only the normal derivative,

aS_ "
8--_ ' will be needed here. If we let u_ be a unit vector in the _ direc-

tion we have

a(6./_o ) h/Ouh
(3.77)

But it is clear from equation (3.74) that

dO dr
-4 O -* O "_ (3. 78)
u_ r o _ u r - _ u e

where u r and u e are unit vectors in the r and 8 directions, re-

spe ctively. The gradient operation, V, may be written in spherical

coordinates as

uo a +uo _ (3 79)
="* 8 + sin 0 ° 8--0- r 80 "V Ur _ ro o

where we have implicitly noted that all derivatives are to be evaluated

along the basic ray. When equations (3.78) and (3.79) are inserted into

(3.77) we obtain
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_'- =ro-d_'? -_-"- -'-d__-_
0 "

(3.80)

The Equations for 6_(s) and 0X(s)

We begin with an important simplification. The term in the

square brackets in equations (3.67) and (3.68) for 5r(s) and 5O(s) may

be written

S f vv S v

St SVI! If.

(3.81)

S! I! IT

d eo(S") dr o(s'', 8 (_o) Jds,,ds" ) - ds" Or

s' dr "

0 , [
ro --d-_-/ -

dr " 8(_ dO "___{(___o)"1
-d_) I - (ro-_) ds"

where equations (Z. 16_ and (Z. 17) have been utilized. But by equation

(3.80) the term in square brackets in the final integral of (3.81) is

°simply - _ , and

I! l!

1 (86_h ds" - = 1 ds"
-C- o \a-_-J - -C o _oro -d_]

• (3.8z)
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If, now, equations (3.67), (3.68), and (3.82)are inserted into

equation (3.74) for 5_(s) we get
S S t

d(ro 2) d(ro2) )a_(s)= __o__o ___dy_

T!

T!

ds'

as' ( [d(roZ)"oL T ]
ZI(3"

83)

Similarly, inserting equations (3.67), (3.68) and (3.82) into equation

(3.76) for 6X(s) we obtain

S S I

-(s'l o(Sl/C .oLTjrd(roZlnZ}

(3.84)

Thus, to recapitulate, equations (3.27), (3.83), and (3.84) for

6tp(s), 6_(s), and 6)t(s) represent the most natural set of parameters

for our discussion of the scattering of radio rays by a turbulent medium.

The Case Do = Constant

Before proceeding to a discussion of scattering phenomena we

will find it instructive to examine the behavior of the equations for

6_(s), and 5_¢(s) for the case of a non-refractive average corona,

for _Zo(r) = constant.

We begin with the equation for 6_(s), (3.27):

S I

6_(s) = "C" sin O° - 0oi ds' • (3.85)
O
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In the case Do = constant the rays will be linear,

lowing geometry:

and we have the fol-

basic ¢
/

S-S v k

r o( _s_\ , -

rce
Sun 1

It is clear from the figure that

sin (eo eo,)= (s-s') cos c
roy

(3.86)

where it may be easily shown that

=" (8o +_i )¢ (radians) _ - (3.87)

Inserting equation (3.87) into (3.86) gives

sin (O o - 8o' > =SrTS' sin ({)o +{pi )

o

which, when inserted into equation (3.85), gives

S I

roS_(s) = r_(s' )_
_sin <8°

o
r o -'d-g-

+_i) ds'.

(3.88)

(3.89)
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But it is clear from the following figure:

basic ray

ds

Source
Sun

that

r dO

o o_-_ (O ° )= sin (_) = sin +Oi . (3.90)

Thus when equation (3.90) is inserted into (3.89) we obtain for the dis-

placement of a scattered ray normal to the plane of its corresponding

basic ray

S I

5z(s) = r°5_(s) =_o _z (_-_o) (s-s')ds'
(3.91)

where we have let

8 : 1 8

0

This may be put in the form

S S

0zcs/oE/ds1
S I

!

Y_ ds v

(3. 92)

(3.93)
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which upon a simple interchange of the order of integration becomes

S S I

6z(s) = _-_ ds" ds' /_o = const. (3.94)

The form of equation (3.94) is exactly that obtained by Chandrasekhar

(I 952), as it ought to be_for in the present limit of _o constant our

model is identical to his.

We discuss next the form taken by the equation for 5_(s), (3.83),

in the limit of _o constant. In that case equation (3.83) is
S S I

LJ'--_-/_d(r°2)>'' a_ " ]

-o

•(3.95)

Now consider the following geometry:

basic ray

ri Source
Sun

By the law of cosines we write

2 s22 = r. + - 2st. coscp iro 1 1

d(r°2) = 2 (s - r. cos
ds I _i ) • (3. 96)
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Inserting equation (3. 96) into (3. 95) yields

S S I

8 6U ds"
6 (s)--(s-so) s"-so)

(s'-So )z

ds' (3.97)

where we have for convenience let

= r. cos @i "SO 1

Interchanging the order of integration and performing the integral over

ds' gives, after a simple change of notation

S

which may (c. f. equations (3.91-3.94)) be put in the form

6_(s) _ 8 ds" ds'
_o = const. (3. 99)

This, too, agrees with the results of Chandrasekhar (195Z)), as it

indeed should.

Finally, it is clear from equation (3.84) that in the limit of

Po = constant we have 6x(s) = 0, a convenient result.

Recapitulating, equations (3.94) and (3.99) for roS_(s) and

6_(s) are valid if _o is sufficiently constant that the basic rays, about

which we are perturbing, are closely approximated by straight lines.

They are identical to the results of Chandrasekhar (1 95Z).

The Equations for 5_(s), 6tph(S) , 6tgr(S) and 6f(s)

To further our preparation for the subsequent discussion of
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scattering by a non-homogeneous, non-isotropically turbulent solar

corona, we introduce now an additional scattering parameter, the

variation in phase, 6_,(s), of a wave as it traverses the scattering

medium. This variation may be conveniently written in terms of the

source-observer optical length difference between the perturbed ray

and its corresponding basic ray:

observer (" (observer) °(-
- 6¢(s) = I I

_ds _o dsJ
I

J
source (source) °

(3.100

The first integral is to be taken along a perturbed ray and the second

is to be taken along the corresponding unperturbed ray. Let us con-

sider the first integral, along the perturbed ray. Since the perturbed

ray at all points lies close to its corresponding average ray we seek to

relate the refractive index at a point on the perturbed ray to the refrac-

tire index at the corresponding point on the basic ray. Since the cor-

responding points are points of equal (s) we may set s = s o and write,

to first order,

_(S=S 0

d_ o

) =_o(So)÷ (-_) 6r(So) +6"(So)
S

0

Equation (3. 100) becomes then

observer

J  )ds°= (/Zo+ 6_z + --47- 5

source

(observer) o

/ _°ds°

(source)o

(3.101)
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where both integrands are to be evaluated along the basic ray. Now

only the limits of these integrals remain to be considered. If the arc

length between source and observer were the same for both the per-

turbed ray and the unperturbed ray the limits would be the same and

in equation However, arcwe could eliminate /aodS o
the above. the

length between source and observer is not necessarily the same for

the perturbed and unperturbed rays, since upon perturbation the ray

may be displaced parallel to itself, i.e. 6x = 0. Since by parallel

displacement we mean that corresponding points, i.e. points of equal

(s), have a displacement component parallel to the basic ray it is easy

to see that the arc length between source and observer will not be the

same in the perturbed and unperturbed cases, but is in fact different

by 5x(s). Then equation (3. 101) takes the form, to first order,

/s-5×(s) / s

- 5¢(s) d_° r) ds °

o o

_odSo

where s is the source-observer distance measured along the basic

ray. This may be put in the form

- 5¢(s)

(g) S+5/a +--47 5r ds ° o

O

S

tao+ 6ta

s-5×(s)

cl!a° r) ds o+ --d-F 5
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Remembering that 6_(s) is a small quantity we obtain finally for the

net variation in phase

6_(s) = _-_ {/_o(S)6x(s)

S

Or,s,]
(3.1oz)

where the integration is to be carried out along the basic ray. Thus

6¢(s) is seen to have as its origin two causes, one appearing as an

integration along the basic ray of the variations in optical length, and

the other appearing simply as a shift at the observer of the ray parallel

to itself. We may have intuited these terms at the start, but the de-

rivation presented here is more convincing.

In the special case that Do = constant equation 3.10Z becomes

S
f-

54_(s) = -_ Jo 6_(s') ds' bL° = const.

which is the expression used by Chandrasekhar (1952).

Now, with regard to observability the most convenient inter-

pretation of a phase fluctuation is as a fluctuation in the time necessary

for a "phase front" to traverse, from source to observer, the ray path.

we denote this fluctuationIf

in arrival time as 5tph(S), we may write

k 5 (s)
6tph(S ) = _ Lrg-_

(3. 103)

where the minus sign arises since a phase advance (i. e. 6_(s)> 0)

(3. 104)
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implies that the phase front has arrived at the observer earlier than

it would have in the absence of coronal inhomogeneities, and the fluc-

tuation in the time of flight is therefore negative. Usually 5tph is

not observed directly; this would seem to imply "tagging" individual

phase fronts on a CW signal. However, 5tph might be expected to

be observed indirectly as a spectral broadening of a CW signal,

since fluctuations in time of arrival of successive phase fronts

result in a frequency modulation of the signal, and consequently a

spectral broadening. We may analyze this effect as follows. Consider

a segment of the reference {unperturbed) CW signal containing N

complete cycles extending over a time interval T, as illustrated in

the first of the two figures below. The frequency of this reference

signal is therefore

N
fl = -T "

Now suppose a perturbation occurs such that the time of arrival

of phase front 'N' is delayed by 5tph with respect to the time of

arrival of phase front 'O', as illustrated in the second figure below.

We may then write the frequency of this perturbed signal as

: N
fz T +6t

ph
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, N cycles, Time T

-_ time

N cycles, Time T +fitph

9b- 6 tph

D* time

Now, for solar coronal disturbances we expect the variation of 5t
ph

with time to be slow, typically on the order of seconds (Slee (1 959),

Hewish and Dennison (1966)). This thus represents the order of mag-

nitude of T. However, as will be shown in the numerical discussions

of Chapter IV , we expect 5t
ph

seconds. We may therefore assume

5tph << 1
'i"

to be typically less than 10 -4

(3.105)

to obtain

f2-fl

T1

5t
= ph

T
(3. 106)
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This expression may be generalized somewhat to read

= d6tph (3. 107)5f

T _-t

where here 5f signifies the fluctuation in CW frequency, and f the

unperturbed CW frequency. Unfortunately it is difficult to pursue

(3. 107) further, since both the amplitude and the fluctuation rate of

6t are random functions of time. We shall, however, discuss the
ph

significance of 6f in subsequent chapters. For completeness, we

write, with the aid of equation (3. 104),

5f = ), d5¢
(3. 108)

Having discussed the variations in the time necessary for a

phase front to traverse a ray path, we now conclude the present chap-

ter with a consideration of the fluctuations in the propagation time

along a ray path of a signal pulse.

We call this fluctuation 5t As was the case with 6_(s) (see
gr"

equation (3. 100) and corresponding discussion) there are two distinct

contributions to 6tg r. The first of these is readily found from equa-

tion (Z. 46), which yields

s s (d oh'

(Stgr) = i 8_ O ds' = ___o 8_(s') + \--d-rJ5r(s')1 -6- _ - _o(S ,)Z ds'

where in the integrand the value of 6_z(s') is to be evaluated along the

appropriate basic ray (see equation (3.9) and appropriate discussion).

The sign above is negative since a positive variation of the refractive
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index implies an increase in the group velocity, and thus a decrease in

the flight time of a pulse traversing a ray. The second factor contribu-

ting to 6tg r is the displacement, 6x(s), of a ray parallel to itself. The

effect of a positive 6_¢{s) is, as may be readily seen from the illustra-

tion of page 64 , to lessen the ray transit time of a signal pulse. Thus

) = 6_(s)
6tgr 2 _o c

Combining (6tgr) 1 and (6tgr) 2 we obtain immediately

_5_(s' ) \-d-r-/
= lf6×(s) + ds (3 109)

5tg r - __ Uo(S') z "

In the special case that Do constant equation (3.109) becomes

S

6tg r = _ c___° 6D(s')Do(S,( 2 ds'
Do =" const. (3. ii0)

It should be pointed out that equations (3. 109) and (3. Ii0) are expected

to be of great use, since 6tg r may be directly observed, for example

by noting the fluctuations in the relative times of arrival of a series of

equally spaced (in time) pulses originating at some artificial source.

Summary

We have in the present chapter been concerned with the estab-

lishment of a basic formalism with which we may proceed in a general

fashion to discuss scattering phenomena in a non-homogeneous, non-

isotropically turbulent solar corona. To that end, we have successfully

derived general expressions, in quadrature form, for the scattering
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5f, and 5t ofparameters 5_(s), 5_(s), 5;¢(s), 5_(s), 5tph, gr'

interest for the assumed ray description. Their validity is limited

only by the applicability of the first-order perturbation analysis used

and by the assumption of spherical symmetry in the average corona.

We have, however, said nothing thus far about the nature of the per-

turbing refractive index other than that it is small, which assumption

forms the basis of the validity of the first order treatment.

The scattering parameters here derived have been shown to

be identical with those found by Chandrasekhar (1952) in the limit of

a homogeneous corona, ;_o = constant. They are considerably more

general, though, in their validity when the assumption of coronal

homogeneity is relaxed, i.e. when b_° is allowed to be any function

of r. Thus we have obtained a formalism which allows precise study

of the effects of overall coronal refraction on scattering phenomena.

The usefulness of this in the study of the scattering of signals from

sources "external" to the corona is obvious, but it should be pointed

out that the present formalism is also applicable to the study of the

scattering of signals originating in the solar atmosphere itself, a

problem which has never been adequately treated.
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CHAP TER IV

Scattering by a Nearly Homogeneous Medium

Introduction

It is the purpose of this chapter to analytically discuss the

statistical behavior of scattered rays in a medium for which the aver-

age component, Do' of the refractive index is sufficiently approximated

by a constant that the basic rays, about which the scattering occurs,

may be considered nearly linear. In this case important simplifica-

tions occur and under certain assumptions the equations determining

the scattering parameters may be inverted, providing a determination

of the properties of the scattering component of the medium from

appropriate sets of observations of the scattering.

The Statistical Properties of the Medium

As presented in Chapter III, the refractive medium is considered

to consist of two components: a local average component, Do{r}, about

which occur turbulent fluctuations, and the fluctuating component of the

refractive index itself, 5_(r). The local average component is an

exactly specifiable function of r, but the fluctuating component, on

the other hand, is not exactly specifiable, but is known in only a

statistical sense. In this paragraph we seek to discuss the statistical

properties of the fluctuating component.

The basic significant statistical quantity by which we shall

describe the fluctuating component of the refractive index is its spatial

autocorrelation function, which will be written as
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F -- < 1 ) (7z) > (4. I)

where, as in Chapter III, the angular brackets represent an ensemble

average or, if the turbulent processes in question are ergodic, a time

average. It is clear that we may write in general

F = F(rl; r 2- r 1) (4.2)

The first functional dependence of F, namely (r 1), specifies the local

region of space "around which" the autocorrelation function is being

calculated, while the second functional dependence, namely (r 2- r 1),

represents the usual vector offset in the calculation of the autocorre-

lation function.

Now, equation (4.2) is completely general, no specification

about the medium having been made, but as such it is of no use to us

as its generality precludes useful analytic treatment. It will be useful

therefore to extend the assumption of spherical symmetry from the

average corona to the statistical properties of the turbulent component

as well. In this case equation (4.2) takes the form

F - F(rl; rz- rI) (4.3)

whe re

any point on a sphere of radius r I

associated with the orientation of

other point on the same sphere.

( r 2- r 1) is still free, however.

r 1 = I r 1 I. This says that the autocorrelation function about

is, apart from geometrical factors

r 2- r 1 , the same as that about any

The geometrical dependence on
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Specification of the geometrical dependence of the autocorrela-

tion function, associated with the functional dependence on r 2- r I ,

leads us to distinguish several interesting special cases. The first,

and by far the simplest, is that of isotropic turbulence in which it is

assumed that no mechanism exists which can maintain a preference

for any particular direction in space. Clearly, then the dependence

of the autocorrelation function on geometrical factors associated with

the orientation of r 2- r I must be null, and equation (4.3) then be-

comes

F =F(rl; I r 2- rll). (4.4)

A subtle point arises in this connection, however, which must be

pointed out. In writing the autocorrelation function, equation (4.4),

as a function of both r I and the magnitude of r 2- r I we essentially

say that once the point at r 1 , about which the autocorrelation function

is to be calculated, is chosen one sees the same behavior, in a statis-

tical sense, in all directions from that point. This is peculiar when

we recall that we are allowing a radial gradient of the parameters

governing the statistics to exist, and it indeed represents a contradic-

tion, as will be now demonstrated.

It is clear that in calculating the correlation of equation (4. I)

no preference is given to either point r 1 or to point r 2 . The form

of equation (4.2) does imply a preference, however, for point

It may be removed by requiring a compatibility condition:

F(rl; r 2- r 1) = F(r2; r 1- r 2)

r 1 •

(4.5)
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which says simply that it doesn't matter whether the correlations are

calculated about point r 1 or about point r 2, as long as they are cal-

culated between points r 1 and r 2 . If we restrict ourselves to a radial

gradient of the parameters governing the scattering, and to a radial

displacement, the above requirement takes the form

whe re

F{rl; (r 2- r 1) _ = F_r2;- (r 2- r 1)_) (4.6)

A

r is the unit vector in the radial direction. If we now impose

the condition of isotropy, equation (4.4), on requirement (4.6) the

latter becomes

F{rl; Ir2- rll_ = F_r2; ] r2- rll_. (4.7)

Equation (4.7) is the form taken by the compatibility condition, equa-

tion (4.5) under the assumptions of isotropy and radial symmetry; it

is clearly violated in virtue of the assumed radial gradient of the

parameters governing the statistics, thus proving the aforementioned

contradiction. Hence equation (4.4) is incorrect. However, it will

be very nearly valid if the displacements over which appreciable cor-

relations exist are small compared to the distances over which the

statistical properties of the corona vary significantly. As the former

lengths are on the order of 200 km (Hewish and Dennison (1966) ) and

the latter are on the order of R we expect the contradiction discussed
e

above to be of no importance, and equation (4.4) may be regarded as

a valid form for a possible coronal correlation function.

A case more interesting than that of isotropy, however, is when

the radial direction acquires some special significance. In the solar
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corona this can occur for several reasons. First, the fact of radial

coronal out flow could in itself be sufficient to ascribe a preference to

the radial direction and destroy isotropy. A considerably more likely

mechanism, however, is the preference imparted to the direction of

the coronal magnetic field in virtue of the relative enhancement of dif-

fusion along a given field line with respect to that transverse to it (van

de Hulst (1950), Hewish (1955, 1958), H_'gbom (1960), Hewish and

Wyndham (1963), Erickson (1964)). As the magnetic field is frozen

into the coronal plasma one expects the radial coronal out flow to

produce a radial magnetic field. Solar rotation will cause the field

lines to be curved, however. The greatest curvature occurs in the

vicinity of the solar equatorial plane where the magnetic field takes

the form of an Archimedian spiral with a pitch angle, _, given by

tan a = rG

where G is the angular rate of the solar rotation, and V is the {con-

stant) out flow velocity of the coronal plasma. These relationships

are illustrated below.

V

Ot

equatorial

magnetic
field line

sun
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The predicted results of Parker (1958, 1960a, 1960b), and recent

experimental evidence, for example that of Ness and Wilcox (1965)

indicate a value of approximately 50 ° for a near the orbit of the

earth. This figure, coupled with the above equation, implies that

within approximately 30 R e from the sun the magnetic field is very

nearly radial, and the radial direction may then be preferred. In

this case the dependence of the autocorrelation function, equation

(4.3),on (r 2- r 1) can be separated into a dependence on the radial

component of (r 2- r 1), namely (r 2- r 1), and on the "transverse"

component, namely rl (q_2- q_l )2 + rl sin _i (82- 01 __ for

small (e 2- el) and (q_2- _°i )" The autocorrelation function of equation

(4.3) then takes the form

2 )z 2 2 0 ]1/2F =F {rl; I r 2- r 1 I, r 1 (cP2-cP 1 + r 1 sin _1(02- 1 )23 }

(4.8)

The functional dependence in equation (4.8) of the correlation on the

magnitude of the radial component of r 2- r 1 does not satisfy the

compatibility condition, (4.5), for the reasons discussed in connection

with the isotropic case. As in that case, however, we shall assume

the distances over which appreciable correlations occur to be small

when compared with the distances over which the statistical properties

of the corona vary significantly, in which event equation (4.8) may be

regarded as valid.

A third case of interest is that in which the correlation function

exhibits a three-fold preference for the r, 0, and _ directions. Within

30 R the origin of the radial preference has already been suggested,
®
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but we here make plausible a difference in the behaviors of F in the

8 and _ directions. If, as we have been assuming, the plane _ = _r/Z

is the solar equatorial plane {or, nearly, the plane of the ecliptic} we

would expect to observe, in the solar equatorial plane, a difference in

the behaviors of F in the O and _ directions if the coronal out flow

were not radial, but confined somewhat to either the equatorial plane

or to the solar polar regions (Hewish and Wyndham (1963) }. If this

is the case the dependence of the autocorrelation function on the dis-

placement ( r 2- r 1 ) might (in the solar equatorial plane} be separated

into a dependence on the radial component of (r 2- r 1 ), namely (r 2- r 1 ),

and on the two "transverse" components, namely llrlz-L. (_2-_i )2|I/2-_J

and _rl2__ (02 - 01}2_I/2 for small (02-01) and (_2-q_l). For correla-

tions not in the vicinity of the solar equatorial plane complicating geo-

metrical factors will appear; since most artificial sources of current

interest are expected to be confined to the vicinity of the solar equa-

torial plane we shall neglect these complicating factors and consider

only the simpler case. Then the autocorrelation function of equation

(4.3) takes the form

F = F{rl;lr z- rll, Irl(OZ-81)l, Irl(cPz-_Pl)I}. (4.9)

Once again, as was the case with the correlation functions of equations

(4.4) and (4.8), equation (4.9) does not satisfy the compatibility condi-

tion (4.5). We shall, however, assume that the correlation distances

are small compared to the distances over which the statistical properties

of the corona vary appreciably, in which event equation (4.9) shall be

regarded as valid.
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The fourth, and final, case we shall consider is that in which

we drop (for the sake of simplicity) the difference of the statistical

dependences on the @ and @ directions, and ascribe rather a special

preference only to the direction of the magnetic field, but for the case

in which the non-radial nature of the field lines is taken into account.

In that case it is clear that the correlation function will be of a form

very similar to that of equation (4.8), but with the field line direction

replacing the radial direction. If the field lines may be regarded as

linear over a (small) correlation distance a simple transformation of

coordinates gives a correlation function of the form

F = F {rl; l(cos _) (r 2- r I) - (sin_) r I (82- @l)l,

_-rl 2 (_2- _I)2 + ((sin _) (r 2- r I)

2 1/2

+ (cos a)r I (O2- 01 )) I } (4. i0)

where for the sake of simplicity we confine our attention to the solar

equatorial plane, where the magnetic field lines are planar; for satel-

lite sources this will be the case of interest. Finally, it should be

remarked that, as has been the case with equations (4.4), (4.8), and

(4. 9), equation (4. i0) does not satisfy the compatibility condition,

equation (4.5). For the reasons discussed above we shall neglect

this inconsistency.

To briefly recapitulate, equations (4.4), (4.8), (4.9), and

(4. I0) represent the forms taken by the spatial correlation function,

equation (4. i), of the refractive index fluctuations of the medium for
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the following conditions

i)

ii)

iii)

iv)

isotropy (local)

only the radial direction acquires a

special significance

in the solar equatorial plane the r, @, and cp

directions acquire a special significance

only the direction of the (curved) magnetic

field acquires a special significance,

respectively. The parameters governing the statistics have been as-

sumed to be functions of the coordinate r only. In all cases the corre-

lation distances have been assumed small compared to the distances

over which the parameters governing the statistics vary appreciably.

Case (iv) has incorporated the additional restriction that the correla-

tion lengths be much less than the distance over which the angle

changes appreciably.

Now equations (4.4), (4.8), (4.9) and (4.10) are in themselves

of no future use to us, having served primarily to introduce the reader

in a general way to the kind of medium we are considering. To proceed

we must postulate explicit functional forms for the correlation functions.

We begin with the simplest case, corresponding to equation (4.4), that

of isotropic turbulence. We choose a correlation function of the form

(Chandrasekhar (I 952) )

<6_(_1)6_(rz) > =<O2_r>lexp -Ir Z r11Z/ro(rl (4.11)

where T O is the correlation length and <62_> is a correlation amplitude;

both v and <62_> are functions of r 1. Equation (4.11) is clearly of the
O
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form suggested by equation 14.4), but it is certainly not the only ex-

pression of that form. Other correlation functions have been suggested

(Obukhov (1949), Liebermann (1951), Chernov (1960) ) but the function

of equation (4.11) possesses certain virtues, among which are analytical

convenience and proper behavior near I r 2- r 1 I = 0 (Chernov (1960)).

The only restriction we shall impose on the validity of equation (4.11)

is that the correlation length be small:

I 1Vo(rl) << 1 d<5 2b_ >
< 5 2;2 > drl

r°(rl) << --1--

C4.12)

(4.13)

The second case, corresponding to equation (4.8), is that in

which only the radial direction acquires special significance. The

correlation function chosen for this case is (c. f. equation (4.11) )

<SN(r 1) 8_(_ 2) > =

t _2 _ 2 2 @ )2+r12 _t
<52D> exp _r2- rl _ r 1 sin _1(02- 1 (_2-_1)2

a 2 b 2

(4.14)

where (a) is the correlation length in the radial direction, (b) the cor-

relation length in the "transverse" direction and < 5 2;_ > the correlation

amplitude; quantities a, b, and <52 > are all functions of r 1. Again,

the only restriction on the validity of equation (4.14) is that the corre-

lation lengths be small:
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a(rl)• b(rl)<<[l_ral ]-l [b db• -dTl ]-l

i d<6_>] -1
a(rl), b(rl)<<[<6Z > dr I •

(4. 15)

The third case, corresponding to equation (4.9), is that in which•

in the vicinity of the solar equatorial plane• the r, @, and _0 directions

acquire special significance. The correlation function chosen for this

case is (c. f. equation (4.14))

< 6/_ (r 1 )

rl (02- 01 rl (_2-_1(
a 2 b 2 d 2 }

exp

(4.16)

where (a) is the correlation length in the radial direction, (b) the corre-

lation length in the O-direction, (d) the correlation length in the C-direc-

tion, and <62/_> the correlation amplitude; quantities a, b, d and

<52 > are all functions of r 1. The restriction on the validity of

equation (4.16) is

a,b,d F 1 1 -1,

<62_> dr 1

Finally• the fourth case, corresponding to equation (4. I0), is

that in which the direction of the magnetic field acquires special
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significance. Restricting ourselves, for the sake of simplicity, to

correlations in the vicinity of the solar equatorial plane we take a

correlation function:

exp {_ [ (c°s
< r>l

rl)-(sin ce) rl(O 2- 81)] 2

2
a

rl (02- @l + (sin_)(r 2- rI) + (cos _) rl(O 2- O I) }
b 2

(4.17)

where (a) is the correlation length in the direction of the magnetic field,

(b) the correlation length in the "transverse" direction, <62_> the

correlation amplitude, and _ the angle formed by the radius vector and

the magnetic field direction; quantities a, b, <52_> , and a are all

functions of r 1. In addition to restrictions (4.15) we impose here the

additional condition

1 da l -I
a(rl)' b(rl)<< [_ _I" •

(4. 18)

To recapitulate, equations (4.11), (4.14), (4.16) and (4.17)

represent postulated functional forms of the coronal correlation func-

tions for the four cases under consideration, subject only to the

assumptions of spherical symmetry and smallness of the correlation

lengths. Indeed, the worst assumptions made are with respect to the
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functional forms per se, which may at best be regarded as eminently

re asonable approximations.

Before we proceed to utilize equations (4.11), (4.14), (4.16)

and (4.17) in the subsequent scattering analyses, it behooves us at this

point to briefly discuss the connection between <52 > and the coronal

electron density fluctuations. Returning to equation (2.51) we had for

the refractive index of the corona

2 2
2 oa 4_e n

P = 1 (4.19)
=i---- 2-02 m

Taking a variation of this we obtain

2
oa 5n

51 2) = 2_5_ =-# n (4.20)

which to first order gives

2
- _ 5n

5_ = po 2 n
2_o_ o

(4. 21)

Now, from equations {4.11), {4.14), (4.16} and {4.17) it is clear that

in the four cases considered

<521Z > = <5_(rl )2> (4.22)

Combination of equations (4.21) and (4.22) yields

4

D po 2<5 > = 2 4Oj_ 2 <5 n> (4. Z3)
4_o n o
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where all quantities are to be regarded as functions of r 1 and where

)2 (4.24)<62n> : <6n(r 1 >

Taking the square root of equation (4. Z3) gives

Z
0¢

= po _ (4. ZS)
__'6_'r.m.s. Z "6n)r.m.s.

2_o00 no

which is the desired result.

It should be finally remarked, somewhat parenthetically, before

closing that in this section our discussion of the statistical properties

of the coronal turbulence has of necessity relied on some rather broad

generalizations and physical intuition. It should be pointed out, however,

that a detailed discussion of the coronal turbulence per se is an import-

ant area for future study, but unfortunately quite beyond the scope of the

present work.

The Case of Isotropic Turbulence

The scattering of radio rays by an isotropically turbulent

medium of uniform average refractive index may be completely de-

scribed through use of the equations of Chapter III for the five scat-

tering parameters 6zCs), 5_Cs), 6×(s), 6_(s), and 6tg r. In the limit

of _o constant, the underlying assumption of this chapter, we had

(3.94), (3.99), (3.103), and (3.110))
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S S t tt

o o
S S t tv

8

(4.26)

(4.z7)

8×(s) = 0

S

2_ _ 6/l(s') ds'6_(s) = - -X-
0

S

= : _ 6_ (s')
8tgr - _ o Ilo(S')2

(4. Z8)

ds' (4.29)

We are to be reminded that these relations were obtained from their

more general representations by formally using _o = constant, which

implied that the basic rays were linear. However, we are reminded

also that the expressions above for 8 z(s) and 6_(s) will hold even if

Do _ constant, the only requirement for validity being that the basic

rays be sufficienly linear that the geometrical relations of equations

(3.86), (3.87), (3.90) and (3.96) closely hold. That is, the basic ray

must be so slightly curved as to at all times depart only slightly from

its linear approximation. As outlined in Chapter II, if _ is the (small)

ray turning angle, then our condition will be satisfied if, for a distant

source
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dX
(S-So) tan @ E _ --d-F_ << 1

and if, for source and observer equally distant from the sun,

dX
(S-So) tan_ I-X--d-_ <<I

Satisfaction of these criteria may be examined for small # with the

aid of equation (Z. 30).

On the other hand, the equations above for 6x(s), 6_(s), and

6tgr(S) seem formally to require that Do - constant (see equations

(3.84), (3. 102), and (3. 109)). Now expressions (4.28) and (4.29) above

differ from their corresponding general expressions (_o(r) not constant)

by terms in 6_(s) and 6r(s) (see equations (3. 102) and (3. 109). But as

inspection of equations (3.67), (3.82), and (3.84) shows both 6x(s)

and 5 r(s) are integrals of appropriate functions multiplied by 86u/8_,

whereas in our approximate expressions, (4. Z8) and (4. Z9), for 6_(s)

and 6tgr(S) only integrals over the basic ray of 6_(s) appear. Since

the scale size of the turbulence is expected to be small compared to

other lengths in the problem, on the order of 200 kilometers as sug-

gested by Hewish and Dennison (1966), the refractive index gradient,

86_/8_, will be large and we might thus expect the contributions to

6_(s) and 6tgr(S) from the terms we have dropped in writing (4.28)

and (4. Z9) to be large in comparison with the terms we have kept, even

if _o(r) is nearly constant and the basic ray nearly linear. It is shown
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in the Appendix, however, that equation (4.28)for 6_)(s) is valid even

2/_o 2 << 1if _o _ constant as long as the basic ray is nearly linear and mp

In that case, to first order in u_ 2/0¢2 the two terms (in 6x(s) and 6 r(s))
P

which we have dropped in writing equation (4.28) identically cancel. We

are, however, not so lucky with expression (4.29) for 6tgr(S), for there

the terms which we have dropped do not cancel; the largeness of the

correction terms leads us to consider use of equation (4.29) further.

Now as shall be seen shortly we will not be interested in 6tgr(S)

per se, but rather in the mean square of 6tgr(S), which we shall write

as < 6tgr6tg r >. We here distinguish two related quantities, however:

the mean square of 6tg r which is actually observed (to be for the present

denoted < 6tgr6tg r >o ) and the mean square of 6tgr(S) expected on the

basis of our approximate relationship (4.29) (to be for the present de-

noted < 6tgr6tg r >R ). Anticipating somewhat our notation, it is shown

in the Appendix (equation (A. 62)) that under certain weak restrictions

we may write

< 6tgr6tgr >R = < 6tgr6tgr >O

R 4 dDo_2
- F(n, m) < 6_6_ >Rc-c--Z( --d-'{ /r= R

whe re

R = perpendicular distance from the solar

center to the basic ray
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n(r) ,,- l/r n

b(r) = correlation distance transverse to the

radial direction _ 1/r m

F(n, m) = a function of n, m defined by equations

(A. 62) and (A. 63).

< 6_6@ >1% = an observed quantity to be defined

later in the chapter.

Now it is seen that if n(r) is known, as we shall presume it to be, and

if < 6tgr6tg r >o and < 6¢6¢ >R have been determined by observation,

then < 6tgr6tg r >R may be found as a function of R. This implies

therefore that calculations based on equation (4.29) will still be of

use, for even if < 6tgr6tg r >R calculated therefrom is not directly

observable, it may still be found in a straightforward manner from

observable quantities. We shall in what follows, therefore, confine

our discussion to equation (4. ?9), taking advantage of its simplicity,

but keeping in mind that < 6tgr6tg r >R thereby calculated does not

represent the values we expect to observe, but is rather simply de-

terminable from the observational data as discussed above.

We may now proceed. We at this point introduce two new

quantities related to 6 z(s) and 6_(s), but in a sense more physically

meaningful than they:

6_(s) = d6_(s) (4.30)
ds
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d6 z(s) (4.31)6_S) - ds "

Since 8_(s) and 6z(s) represent the displacements in the _ and z

directions, respectively, of a perturbed ray from its corresponding

basic ray, it is clear that the quantities 5¢(s) and 6_s) are respec-

tively the tangents of the two angles formed by the basic ray with the

projections of the perturbed ray onto the plane of the basic ray and

onto the plane normal to that plane and tangent to the ray at s; in our

small scattering treatment the tangents of these angles will be the

angles themselves. Implicit in this identification of 5_b(s) and 5_(s)

with appropriate angles formed by a perturbed ray and its correspond-

ing basic ray is the assumption that 6x(s) = 0, which is true only if

/_o -= constant. However, if _o is only approximately constant, and

therefore 6x(s) _ 0, it may be shown that the tangent corresponding,

for example, to 5¢ (s) is given by

d6¢(s) (i + d6_C(s))-I

showing that for the perturbation analysis of scattering considered here

the effect of a non-zero 6x(s) is second order. The quantities 6¢(s)

and 6_(s) defined by equations (4.30) and (4.31) will be therefore iden-

tified with the angles described above even if _o is only approximately

constant.

Now the scattering parameters 6¢(s) and 6_(s) are of greater

physical importance than are the parameters 5_(s) and 6z(s) for the

reason that the former quantities are, apart from effects due to the
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radial gradient of scattering, the angular displacements in the sky of

a point source undergoing scattering, and are therefore direct observ-

ables, while the latter two quantities are not directly observable and

therefore of less interest. If p(6¢}d6¢ represent the probability that

5¢ lies between 5_b and 6_+dS_b, and if we assume, as the central limit

theorem indicates, that the effect of multiple scattering is to produce

a normal distribution, we then have

P(6¢) = 1 e 2<6¢6¢>

/ Z_t< 6¢6¢ >

P(6Q) = 1 e

/2_t <6_60>

where <6_6¢ > and <6060> are the mean-squares of 6¢ and 6 _. If

one considers the scattering as redistributing the received signal power

from a point source over some non-zero solid angle, the half width of

the power distribution is

in the plane of the basic ray, and

1.35/<6o6o>

normal to that plane. Thus <6¢6_b > and < 606_ > are readily observable

by noting the angular distribution at the observer of the signal energy of
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what would be in the unscattered case a point source. In what follows,

then, our attention shall be principally directed to the new scattering

parameters 6_(s} and6_(s}.

For linear basic rays equations (4.26) and {4. Z7) yield, upon

insertion into {4.30) and {4.31)

S !

S !

It is clear that for the random processes considered <6_> = <6_> = 0.

Equations (4.3Z} and {4.33) also yield

S S v

\ .2 z
o o _o

(4.34)

<5_(s) 5_(s)>

S S Iv

_ 85.' ds'ds"

o o _o

(4.35)

where the indicated correlations are to be taken between points lying

on the same basic ray, and where for simplicity in writing we have

let n ° - constant (since the distances over which _o varies are very

much less than the correlation distances we shall find that once the

indicated correlations are calculated we may readily relax this condi-

.£ztion to obtain an integral over the basic ray of ). Nor the case of
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isotropic turbulence it is apparent that.

6_(s) : 6 _(s)

and therefore in what follows we shall be concerned only with equation

(4.34).

It yet remains for us to formally evaluate

! V!

(4.36)

For the case of isotropic turbulence under consideration we refer to

equation (4.11) where we had

<6.('_i) 6_(rz)> = <6_>
-ty2-Irz- rl 0

e (4.37)

For a linear ray we can write in the ray coordinate system

- )2+(_ _ )2+ zl)2Irz- rll 2 : (sz- sl z- I (zz- (4. 38)

which when inserted into equation (4.37) gives

<6_(r I) 6U(r 2) > =

- [(sz- s
<62 D> e

l)Z+ (_2_ _ l)Z+ (z2_ zl)2]/ro2
(4.39)

Equation (4.39) yields immediately
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B_l "7 \ 8_2 )

-[(sz-s1)z+(_z-_i)Z+(zz-zl)z]/r°z}

z 2 -(sz-sl)z/'°z--_z--_I
---Z <8 > e

z2= zIT O
(4.40)

where the final evaluation of the derivatives has been at (_2- _i ) = 0,

(z2- Zl) = 0; this is to correspond to the integrands of equations (4.34)

and (4.35) where the indicated correlations are between two points on

the same basic ray.

If now equation (4.40) is inserted into equation (4'34) we have

!

<6@(s)6@(s)> = 2 <62 > e

o o o _o

(4.41)

We define a new variable, r ;

T = S"-S ! (4.42)

and equation (4.41) may be written

s s-s' , _rZ/(1.o,)Z

<6_6_> = J'O_-s ! (T._<6Z >) e d1"ds'(p,o)Z.
0

(4.43)
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Now in equations (4.41) and (4.43) both v O and <82_ > are to be con-

strued as functions of s', and we may therefore do the integration over

r directly. Our area of integration is shown below:

T

-S

•._S T
v

It should be clear from the figure that if r ° << s contributions to the

integral over v will be made only in a narrow band very close to the

T = 0 axis, and we may therefore extend the r limits of integration to

r = + co. This approximation will be most valid indeed for we expect

_" to be on the order of 200 km., and s to be on the order of 1 AU,
o

implying

T

o _ 10-6 (4.44)
S °

Equation (4.43) thus becomes

z )zS _ ' -r /(r ' drds'

<5_5_> =f f (r--_2<6Z_>) e o ----2-
o -_ _o

o

(4.45)
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which yields upon integration

S !

ds,7" 2

o o _o

(4.46)

Consider now the following ray geometry which will be appropriate

under the conditions

r_
rI < rz : IsincPil < r2

r 1 _ rz: I_il_ =/z

where r 1 is the (constant) distance of the source from the solar center,

and r z is the (constant) distance of the observer from the solar center;

the assumed constancy of r 1 and r z is a simplification appropriate for

astronomical sources or artificial sources of sufficiently small orbital

eccentricity, and for earth-based observers:

source

r 1

sun

R
S!=S

O

observer
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Clearly we have

rdr
ds' =

+ /r 2 - R 2

; s '>
S •

O
(4.47)

Equation (4.46)becomes then

_+_rl rz (<6r2 >) rdr (-/-2>

R R o r ]r z_ R z _o

(4.48)

where <82D> and r ° are now both to be considered functions of r;

this corresponds to our assumption of coronal sphericity. Now, equa-

tion (4.48) is our desired result, expressing the mean square of the

scattering parameter 8_ as an appropriate integral over the basic

ray of the parameters governing the coronal statistics. Only the

following assumptions have been incorporated:

i) _o- constant, implying linearity of the basic rays.

ii) spherical symmetry

iii) isotropic turbulence, with a correlation function given

by equation (4.11). This implies that equations (4. lZ)

and (4.13) hold.

iv) v << so

v) appropriateness of the geometry shown on page 105.

Once again, it should be stated that the assumption that _o = constant

is not formally required for the foregoing derivation, the only require-

ment being that the basic rays be nearly linear. In the case where this

latter requirement is obeyed, but b_o = Do(r), it is easy to show that
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(4.48) becomes

r2 (<82_ ) rdr

R R \/_o2ro r 4r z_ RZ

(4.49)

as long as

-I

T O _ (4.50)

In what follows we shall use this latter form.

Now, what we would like to do is invert equation (4.49) to give

Z explicitly as a function of <SAbS_> R, which is an observable
_o TO r

quantity. To this end we rewrite equation {4.49) in the form

<q_'_6_>R = / _ [H(rl_r)+H(rz_r) ] rdr

zA, J rR o r

(4. 51)

where H is the Heaviside step function:

H(x)

"_ X
O r



108

But equation (4.51) is an Abel integral equation with solution (see, for

example, Hildebrand, "Methods of Applied Mathematics, " Prentice-

Hall (1952), §4.13)

)]
_oZro ] r [H(rl-r)+H(r2-r

oo

1 I r dR- _--3--/2_r < _]_6@>R _R:/R2_r2 (4.52)

r

if r 1 _ r I(R) and r 2 _ r2(R); these latter conditions imply that the

source and observer maintain constant distances from the solar center,

an assumption approximately valid for typical astronomical and satellite

sources. Now, for the geometry shown on page 105 we will always have

R < r 1 or r 2, whichever is smaller, implying that we shall be able to

ascertain the parameters governing the coronal statistics only for

r _ r 1 or r 2, whichever is smaller. Equation (4.52) becomes then

co

) ; r dR<62B> = - 1 d <6_6_>R "I_

"o zro r 2_r 3/2 -d_ r V/ _L r

(4. 53 )

Thus equation (4.53) allows determination of the combination of the

parameters governing the coronal statistics on the left-hand side over

a range of r equal to the range of R over which one has observational

data of <5_5@>R "

i)

ii)

We have required only

spherical symmetry

the constancy of the distances of the source and

observer from the solar center.
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The latter restriction will generally be satisfied by most sources of

interest to an observer on the earth, but it should be pointed out that

it becomes an unnecessary restriction in the event that source and

observer lie beyond the region of the corona where the greater part

of the scattering occurs. For an interplanetary electron density dis-

tribution specified by equation (2.37) it is expected that this will be the

case for sources and observers approximately i A U from the solar

center as long as R _ 5 A U.

We turn now to a consideration of the fluctuations in the transit

time of a signal pulse traversing the coronal medium. For the present

case of /_o = constant equation (4.29) is appropriate:

S

= 1 _ 8p,(s')
5tgr --c- o

ds'

For the random processes we are considering it is clear that <Stgr> = 0,

but we can also obtain

S S

<6tgr 6tgr> ---2- _oZ(s , Z, ,, ds'R c o o }_o ts )

where the correlation in the integrand is to be taken between two points

lying on the same basic ray. If equation (4.39) for the correlation is

inserted into the equation above, and the integration over (dr) carried

out, we obtain the following

S !

<Stgr 6tgr>R --2-- 4 ds'
C O _O
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where we have implicitly taken the average refractive index to be suffi-

ciently constant that approximation (4.50) holds. Now if the geometry

of page 105is appropriate, equation (4.47) may be used and we obtain

r t r 2 (<62/a>r)
= _y _+_ o rdr (4.54)

<6tgr 6tgr> R c---T - _o 4 R zR n \ v/r L-

where, as before, <62 >, r
O and/_o are to be regarded as functions

of r, corresponding to our assumption of spherical symmetry.

Now as discussed at the beginning of this section <6tg r 6tgr> R

may be found from the observable quantities <6tg r 6tgr>o and <6_b6_ >R'

and is therefore in a sense an observable. It therefore behooves us,

as in the discussion of <6_b6q_ >R' to invert equation (4.54) to obtain

(<62_> ro/_o4)r explicitly as a function of the "observable"

<6tg r 6tgr> R. The proper inversion is (see discussion corresponding

to equations (4.51)-(4.53))

(4.55)

<62N> r o -c d <6tg r 6tgr.. r dR
4 _--_Z _ r _/R 2 ZDo r - r

Equation (4. 55) allows us to determine (<62_> ro/Do4)r-- over a range

of (r) equal to that range of (R) over which <6tg r 6tgr> R has been

observed.

Thus our problem is solved. Under the assumption of spherical

symmetry equations (4.53) and (4.55) allow us to determine, for a range

of (r) identical to that range of (R) for which observations have been
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made, the following two quantities:

ii)

i} <021_>)2r
_o o r

<Oeu> r4
_o

Since l_o(r) is know these two quantities allow us to determine <6Z_>

and to{r), the two quantities characterizing the statistics of the medium

and the ones we sought to investigate.

Now to complete this description of the scattering of radio waves

by an isotropically turbulent corona we consider the phase variations

{and thus the spectral broadening) induced by scattering. For the case

I_ ° = constant equation {4. Z8) gave

S

Z9
J" 6_(s') ds'

8¢(s) = - _ o

For the random processes we are considering

above equation yields also

2 s s

: I".I
0 0

<6_> = 0. But the

<6/_(s') 6/_(s")> ds'ds" (4. 56)

where the correlation in the integrand is to be taken between two points

lying on the same basic ray. We may use equation (4.39) for the indi-

cared correlation and carry out the integration over (dr) to obtain

<8¢6¢> : 4=5/z
.'-Z
ko

S

(<8_>ro) ds'
0
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If the geometry of page 105 is appropriate equation (4.47) may be in-

serted into the above to yield

r 2
rdr

<5¢8_>R =41r5/2 r: F (<82 > T O)r_/r Z_ R2k-_o R "R

(4.57)

where, as before, both <82D> and T are to be regarded as functions
o

of r, corresponding to our assumption of spherical symmetry. Equation

(4.57) is the desired result, expressing the mean square of the scatter-

ing parameter 5_ (s) as an appropriate integral over the basic ray of

the parameters governing the ray statistics.

But let us now inquire into the significance of <8_5_> R with

regard to observability. As was discussed in Chapter IIIa variation

in phase may be most conveniently interpreted as a frequency modula-

tion of a CW signal, and thus a spectral broadening is implied. The

variation in frequency, 8f, of a CW signal of frequency f was shown in

Chapter III to obey the relation (3. 108)

5f _ k dS@

If we remember that we are dealing with random processes we get

immediately <6f> = 0. But

<Sf6f> _ _dt W

where we have used the relation

fk o c

The question now is what to do with the time derivative of 8_ in the
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equation above. As a simple example consider a case where

sinusoidally in time. Then

6_ = (6_)o sin (2_ Sh t)

where Sh represents the frequency of phase fluctuations.

easy to show that

8_ varies

It is then

If, however, the variation of 8_ with time is not sinusoidal it appears

that the above expression may be generalized to read

--dT/ = (2Tt)2 <6@6@> < Sh 2
>

In that case the spectral broadening is related to the phase fluctuations

according to

< 8fSf>
= < 6_8_ > (4. 58)

<$h >

and with the aid of equation (4.57) we may write

r2 rdr

<<6f6f>RshZ>R = .--2--ko4175/2ZrlRRZ (< 6Z_ >r°)r/rg- R g

(4.59)

2
As indicated by the notation of (4.59) we expect < fh > to be

r-

2

in fact a function of the ray parameter R, since < pf-h > will be
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expected to depend on the scale size of the turbulence, TO, and the

spectrum of the turbulent velocity distribution, appropriately averaged

Now < fh 2 >R will not be easily observed directly,over a ray path.

but may rather be inferred from measurements of < 6f6f >R and

< 5t 5t > For if we recall that for the linear basic rays we are
gr gr R'

considering _o 1 equations (4.54) and (4.59) readily yield

2 1 < 6f6f >R

< fh >R = -"Z < 5t 8t > (4.60)
gr gr R

2

Now from the foregoing discussion it is clear that < %h >R has been

introduced in heuristic fashion, and its interpretation must be therefore

approximate. It seems reasonable to suggest, though, that

< fh Z>R r (r = R) (4.61)O

will be representative of the coronal velocity at r = R. Further dis-

cussion would necessitate a detailed discussion based on turbulent

velocity spectra within the corona; this problem, although of exceeding

great importance, is not our purpose here, and we content ourselves

with the heuristic description presented.

Briefly, then, we have in this section considered in some detail

the problem of the scattering of radio rays by a spherically symmetric,

=_ constant. Theisotropically turbulent solar corona, for which _o

principal result is that we have successfully described a means by

which < 52 > andv might be found, as functions of r, from the
o

measurable quantities < 8¢ 6¢ >R and < 5tg r 5tg r >R" We have also
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described a means by which the heuristically introduced parameter

2
< fh > might be found from measurements of < 6f6f >R and

< 6tgr 6tgr >R' and have suggested how it might be related to the

coronal velocities.

We proceed now to consider the case in which only the radial

direction acquires special significance in destroying isotropy.

Anisotropic Turbulence with a

Preference for the Radial Direction

It is the purpose of this section to discuss the scattering of radio

rays by a turbulent solar corona describle by a homogeneous average

component, /_o = constant, and a randomly fluctuating component speci-

fiable by a correlation function exhibiting a preference for only the

radial direction. This is the situation we expect to find in the solar

corona within 30 R e , where the solar magnetic field can be expected

to induce a preference for the radial direction.

Since we are here, as in the above discussion of the isotropically

turbulent corona, considering scattering about nearly linear basic rays,

the same relation for the scattering parameters will be used here as

were used above, namely equations (4.28), (4. Z9), (4.3Z), and (4.33)

for 6¢_(s), 6tg r, 5@(s), and6_(s); these are the scattering parameters

with which we shall be here concerned as they are very closely related

to directly observable quantities. We had

S !

0

S !

0

ds' (4.6Z)

ds' (4.63)
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S

2.j
8¢(s) : - _ o

6#(s') ds' (4.64a)

S

1 [" 5_(s' ) ds' (4.64b)r_ _ __

6tgr C 'Jo _o--_ --)z

we will be interested in obtaining the mean squares of these quantities,

and we therefore obtain from equations (4.62)-(4.64)

S S ! ,T

<% > asas
o o

0

S S r ,I

< 8_8_q> : J/o _° Z- (4.66)

< 8_5 _, > \'7C_ o o
< 8/,L(s')8_(s") > ds'ds" (4.67a)

S S

= 1 f i" s" ds'ds"<St 8t > -7 J <Su(s')Su( )>----4-
gr gr c o o ;z °

(4.67b)

where all the indicated correlations are to be taken between points

lying on tl,esame basic ray, and where for the sake of simplicity in

writing we hsve let ;z° = constant, a restriction which we have seen

can bo slightly violated and yet preserve the validity of this general

discussion (see equation (4.50)). We should note that unlike the case

of isotropic turbulence we here can not set 6# = 6_, and equations

(4.65) and (4.66) must be both considered.

To further discuss equations (4.65)-(4.67) it is necessary to

introduce n_,v:explicit expressions for the correlations indicated
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therein. For the case where the statistical properties exhibit a prefer-

ence for the radial direction we had (equation (4.14))

" 2 2(r2_ rl)2 r 1 sin
<6Z_ > exp{ - Z -

a

_i ((92-01)Z+ rl 2(_2-_i )2]_

b 2 J

(4.68)

where quantities a, b, and < 6Zw > are functions of r 1 only. To be of

value equation (4.68) must be written in terms of coordinates natural

to the basic ray, namely, s, _, z (see equation (4.38)). Now since the

case we are considering admits no preference with regard to the orien-

tation of the @ = 0 axis we shall for convenience consider a basic ray

lying wholly in the plane ¢Po = y/2, and we can then set _1 = 1r/2 in

equation (4.68) and draw the following figure illustrating the relation-

ships between the (r, 0, q_) and (s, _, z) coordinate systems:

(sZ-s I)
7

Sz _z
to

o rigin v _

to

origin
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In drawing the figure it has been assumed that the correlation lengths

(a) and (b) are sufficiently small so that for separations between points

(2) and (1) over which statistical correlations are significant we may

draw the two lines connecting points (2) and (1) to the origin as parallel.

This means that (a} and (b) are small compared with the distance from

the origin to the basic ray under consideration. As we expect (a} and

(b) to be on the order of several hundred kilometers and Ir I to be at
o

least R this seems to be a legitimate assumption. From the figure it
®

is easily ascertained that, if we measure @ from the observer (so that

O i > 02).

- rl(8 2- 81) = cosy (s2- sI) + siny (_2- _I )

rz- rI = cosy (_2- _I ) - siny (sZ- s I) (4.69)

rl(O 2- 81 ) = z2- zI

When these relations are inserted into equation (4.68) we have

< 6u(71)6 (rz)>

= <52_ >1 exp - (s2- Sl )2 ----2"--sinZYa+ _c°s 7

_ )2 (cosZy+ sinZy} (z2- Zl)2-(_Z _I -----2--- 7 b z
a

+ 2siny cosy (s2- Sl) (_2- _ I) aZ - V
(4.70)

where (a), (b), and < 62_ > are functions only of r 1. We note that this

reduces to equation (4.39) if a=b (isotropic turbulence), as it ought.
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Now to obtain the correlations indicated in equations (4.65) and (4.66)

we shall take the appropriate derivatives of equation (4.70), neglecting

however all derivatives of (a), (b), and < 6% >, corresponding to as-

sumptions (4.15) and (4.16). We thus obtain

8_ 1 2 8/_ 1 _ 2
< 5/_(r 1) 6_(r 2) >

I / cOs2y + sin27 ) (4.71)=<62U > 2 -----2--a

_2 sin 7 cos 7
-(s2-s 1, _ _

1 )2 )21- e

/a6/J'(r 1) a6/_(r2)-_ = 8 2

8ZlSZ 2
< 6_(r I) 6_(r 2) >

( '))2 sin 29/+ cos 9_
= 2 < 62_ > -(s2-sl a2 b2

b2 e

(4.72)

where we have evaluated the derivatives at (_2- _1 ) = 0, (z2-zl) = 0

to correspond to equations (4.65) and (4.66) where the correlations

are taken between points on the same basic ray. Similarly, the same

evaluation applied to equation (4.70) gives

<6_(r l)6_(r 2)> =

<62 > e - (s2-sl

sin 2 7 + cos 2 7 /

a 2 b 2 J (4.73)

which is the form we shall insert into equation (4.67) for < 6¢5_ >.
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Equations (4.71)-(4.73) may be inserted into equations (4.65)-

(4.67) yielding explicit integral forms for< 6_6_ >, < 6_6_>, < 6_6_>,

and < 6t 6t >. As was done earlier in connection with equation (4.41),
gr gr

we may define a new variable r = s" - s' replacing s" in the integrals

aJ_(I, if a, b << s, extend the limits of the integration over (dr) to + =.

The integration over (dT) may be then carried out to yield (c. f. equa-

tions (4.46) and (4. 59))

S I

< 5_5_> : 2f?r Do 2 _ 1 + - 1 cos 7

S

O [(2a _

i+ b--z 1 cos 2 y]

' 3/2 ds'

(4.74)

' I/Z ds'

< 6_5# > IX-_o! /rr 1<6 > a)

-%

(4.75)

1

1 + _- 1 cos2y

<6t 6t
_r _r

S
f

[(a21 + b--2 -

(4.76a)

1 ds'

1 cos 7

(4.76b)

If we n_,w, as we did in the case of isotropic turbulence,

g,,(,metry s]_)wn on page 105 it is clear that

cos 3/ = R
r

as sume the

(4.77)
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Then defining

A(r)

Z
= a

V
- 1 (4.78)

and utilizing equation (4.47), equations (4.74)-(4.76) become

r 1 r 2

R z 3/Z
R ]r I+A r-2 /rZ- R2

r r2

1 F /<6Z_>/ (1 +A) 1/2 rdrR Z I/2

I+A r--_- /r2- R 2

rI r2

6¢6@

( 1

rdr

/ZV/rZ_ R z

r 1 r Z

<6tgr6tgr>R c2JR JR/ _°4 r

(1 + A) 1/2 rdr

(4.79)

(4.8o)

(4. 81a)

(4.81b)

where, corresponding to our assumption of spherical symmetry, < 6ZU >,

(b), and (A) are to be construed as functions of r. Equations (4.79)-

(4.81) are the desired relationships, expressing the mean squares of

the scattering parameters 6¢, 6_], 6_, and 6tg r as appropriate integrals

over the relevant basic ray of the parameters governing the statistical

properties of the coronal turbulence in the case where only the radial

direction acquires special significance. In the limit of A = 0 equations
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(4.79) to (4.81) reduce to equations (4.49), (4.58), and (4.60) as they

ought. On the other hand, in the limit of very pronounced anisotropy,

A(r) "4_, our equation above for < 5_5_> R approaches that used by

Vitkevich (1966) for radial inhomogeneities. Our two equations (4.79)

and (4.80) represent a significant generalization of those used by him.

The set of equations (4.79)-(4.81), appearing for the first time in this

work, allow disc:ussion of coronal radio scattering for a generally ani-

sotropically turbulent solar corona.

In obtaining the above set of equations the following assumptions

have been made:

i) _o _constant, implying approximate linearity

of the basie rays

ii) spherical symmetry

iii) anisotropic turbulence, but with a preference for

only the radial direction, with a correlation function

of equation (4.14). This implies in turn that equa-

tions (4.15) hold.

iv) a, b<< s

v) appropriateness of the geometry shown on page I17

implying a, b << Iro[

vi) appropriateness of the geometry shown on page 105

Now, as in the case of isotropic turbulence discussed earlier,

we would seek to invert equations (4.?9)-(4.81) to enable determination

of th, function A(r), b(r), and < 82 _ > explicitly in terms of the observ-

able quantities < 6_)6_ >R" < 6f_6f;>R' < 6_6_>R and< 6tg#tgr >. Un-

fortunately, however, the distinctly unpleasant forms of equations

(4.79)-(4.81) seem to preclude the possibility of obtaining formal
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inversions, and we must therefore resort to a number of approxima-

tions.

If A(r) is sufficiently large so that

R 2
A --z>>l

r

(4.82)

over the range of (r) for which < 6 2/_ > is of sufficient magnitude to

contribute significantly to the integrals of equations (4.79)-(4.81) we

may write these as

R3 <6¢6_ >R = 4cry fR(r 3 <6:_b>) 1 rdr_[r ) (4.83)
_o V/r 2- R 2

oo

_o b v/r 2_ R 2

oo

< 8f6f >R 8_5/2 fR
R = .-'-2- ( r < 6% > b} rdr (4.85a)

< %hZ>R )'o V'r 2_ R 2

¢o

R < 6tgrStg r > c---Z- D° 4 ¢r z- R z

where we have for simplicity extended the limits of integration to

infinity; this is a legitimate thing to do as long as we are concerned

about the values of A(r), b(r), and < 6 % > only for a range of r equal
r

to the range of R over which one has observational data of < 6_b 6_ >,

< 6_6_>, <6f6f>, and< 6tgr6tg r> (see equation (4.49) et seq.). The
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assumed largeness of A(r), equation (4.82),

model corona

implies typically for our

a(r) _" 4 (4. 86)

i.e. the coronal turbulence exhibits a radial filamentary structure with

a correlation length in the radial direction roughly four or more times

that in the "transverse" direction. Now, for a corona in which the

preference for the radial direction is maintained by a radial general

magnetic field, one expects the enhancement of diffusion along the

lines of force to produce a radial filamentary structure. This kind of

structure has indeed been observed optically, and more recently by

radio scattering measurements (Hewish (1958), Gorgolewski and

Hewish (1960), H_gbom (1960), Hewish and Wyndham (1963), Erickson

(I 964)). The radio observations, however, indicate correlation length

ratios on the order of 2-3, making assumption (4.86) suspect. But

since the existing radio measurements leading to the above values for

the correlation length ratios are not of great accuracy, our assumption

may well be of value. This may particularly be so in the lower coronal

regions (r < 5 R®) where the magnetic field is strongest and where tur-

bulent mixing will probably not have destroyed the preference for the

radial direction due to the outward streaming of matter from localized

regions of the photosphere and chromosphere (spicules). The optical

observations of distinct radial coronal filaments in the lower regions

of the corona support these notions. It must be emphasized, however,

that the regions of the corona over which the assumption of large A(r)

holds may well be larger than indicated here.
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Equations (4.83)-(4.86), valid under the restriction that A(r)

be large (equations (4.82) and (4.86)), are Abel integral equations and

are directly soluble. Equations (4.84) and (4.85) upon inversion yield

r<52_> = - 1 ..... dR" _ 4

_o b r /" R 2 - r 2 ' _

(4.87)

2 < 8t 8t

<82>b = - c d _ gr gr>R dR;_r 4 _---_--/2 H-E r a _ 4 (4.88)

/_o / R 2 2r - r

These expressions readily yield both b(r) and < 8 2 > for a range of r

identical to that range of R for which one has experimental measure-

ments of < 8_8_> R and < 8tgrStg r >R " Equation (4.83) is the only one

of our set containing A(r). When it is inverted and combined with equa-

tion (4.87) above one obtains the following expression for A(r):

-d_ r dR

R 2
2 r - r . a _4 (4.89)A(r) = r ,

R 2

d < >R dRH_ r

r / R 2 2- r

Again, the range of r over which (4.89) is valid is that range of R over

which one has observed values of,< 8{b 5_ >R and < 5_8_> R . Thus, to

sum, given appropriate observational measurements of < 8_ 5_b >R "

< 8_5_> R, and < 8tgrStg r >R equations (4.87)-(4.89) determine A(r),
R 2

b(r), and < 82 >r for the case where A(r) is large, A(r) -'2" >> 1 over
r

the range of r for which significant contributions are made to the integrals
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of (4.79)-(4. 81). For the model corona (Z. 37) this implies roughly

a/b > 4. In practice the validity of this assumption could be checked

by using equation (4.89) to determine A(r) from the observational data

and then determining whether the value so obtained is consistent with

that as sumption.

A second, but less interesting, situation for which we are able

to obtain inversions of equations (4.79)-(4.81) is when

R z
lAt -7 << i (4.9o)

r

This implies

a

.9<5[ < I.I (4.91)

a rather highly restrictive condition limiting our consideration only to

very slightly anisotropic conditions. We shall pursue this case no

further for two reasons: first, condition (4.91) is so highly restrictive

that it implies anisotropic scattering so slight as to be probably not

observable, and, second, even should the implied anisotropic scattering

be observed it will be shown later in the chapter when we consider

numerical examples that for only slightly anisotropic scattering the

value of

(4.92)

is, for all R, the value of

a(r = R}
b(r = R)
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to within some 10%. Thus examination of the scattering anisotropy as

measured by quantity (4.9Z) provides a short cut to determination of

the correlation length ratio, a/b.

In the case where A(r) is neither large nor small we have been

unable to obtain inversions to our original set of equations, (4.79)-(4.81).

It is still possible, however, to obtain a significant amount of informa-

tion from these relations. We begin with the following very important

observation. For an average corona with electron density decreasing

monotonically outward we expect most of the contributions to the inte-

grals of (4.79)-(4.81) to occur in the vicinity of r = R. In that case it

is apparent from the form of the integrals that the quantity (A) will be

of little effect on the values of< 6_8_> R, < 8_8_ >R' and < 8tgrStg r >R"

Later in the chapter where we consider some explicit numerical examples

it will be shown that for the model corona of (2.37) the effect of (A) on

< 8aS_>R, < 8¢8¢ >R' and < 8tgr6tg r >R will be to increase these

quantities by no more than some 10-15%, arid to that degree of accuracy

then we may write equations (4.80)-(4.81) as

<8nsn> R : 2fy R+ R _o 2"b ]r _r Z_ R Z (4.93)

+ _ (< 5Z_ > b)rv / rdr<8@8@>R ko r2 - RZ
R R

{4. 94)

r I r 2

< 8tgrStgr >R c-_ R " R _t°4 r x/r2- R2

(4.95)
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If, as we have done before, we extend the limits of integration to in-

finity the equations above may be readily inverted to give

oo

:_i d r<0o0o dR_oZ b _-_-_3/z_ r -_ Rz- rZ
r

(4. 96)

(i:c2 d <0,0,r<62_4>b -_--T/2 _ gr gr>R

_o r r

dR

/ R 2- r2

(4.97)

Since Do(r) is presumably known, these equations allow determination

of < 5_ > and b(r) for a range of (r) equal to that range of (R} for
r

which < 6_5_> R and < 6tgr6tgr> R have been observed. Thus having

found < 6"_ > and b(r), we need now find oniy A(r), and we haver

another equation with which this may be done, nameIy (4.79) for

< 5_b 5_ >R" Let us examine this equation. Since we expect most of

the contributions to the integral to occur in the vicinity of r = R, we

inquire what would happen if all contributions were concentrated there.

In that case it is not difficult to see that

a(r : R) =/ < 8_5_>R

b(r = R) i < 5_ 5_ >R
(4.98)

Now, since most of the contributions to the integral of (4.79) occur

near r = R we expect equation (4.98) to be approximately true, and

we may then use direct measurements of the quantity on the right-hand

side to provide an estimate of the behavior of a/b with r. The error

incurred by the procedure will depend on the electron distribution in
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the corona (a steeper radial gradient of the electron density will yield

a smaller error, for then a greater part of the contributions to the in-

tegrals of equations (4.79) and (4.80) will appear near r = R), on the

functional form of b(r) {since b(r) appears in the denominators of the

integrands of (4.79) and {4.80) we expect our errors to be less for values

of b(r) which increase more rapidly with r} and on the functional form

of a/b. These predictions are verified by the numerical calculations to

be done subsequently; we show that if a(r)/b(r) < 4.0 {otherwise we

would use approximation (4.89)) the error incurred in our estimate for

a/b is less than some 30%. If this error is not acceptable an iteration

procedure based on equation (4.98} as a first estimate may be employed.

Now, it may have occurred to the reader that we have thus far

not utilized equation (4.81a) for < 6_60 >R ; the reason for this is that

we have found equations (4.79), (4.80), and (4.81b} sufficient to deter-

mine the parameters governing the statistical behavior of the corona,

that is < 52 >r' b(r), and A(r). However, the fluctuations, 5¢, in the

phase of a signal will, it will be recalled, be observed as a frequency

modulation, or line broadening, of that signal. For a CW signal it was

suggested that the spectral broadening obeys

< 6f6f >
= < 8080>

2

<fh >

and, utilizing (4.81a), we may write

<6fSf> R = 4_t5/2 rl r2

o R R

{< 52_ > b) r
(I+A)I/z

( R2)I+A-- 2
r

(4.100)

rdr

1/? r2_ R2

(4. lO1 )
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If we recall that for linear basic rays Do

(4.81b) and (4. 101) to write

1 we may use equations

< f 2 1 < 6f6f >R (4. 102)

ph >R:_--2" <6tgr6tgr> R

Thus measurement of < 6f6f >R and < 6tgrStg r >R immediately provides

an estimate for the heuristically introduced parameter < fph 2 >R" Its

interpretation in terms of local turbulent motions in the corona is not

subject of this work; we can only say that (< fh 2 >R)I/2 will be re-the

lated in some way to an average over the basic ray of the velocities of

turbulent "blobs" divided by some combination of the correlation lengths;

for example, Jf the outflow is radial and the bulk of the scattering occurs

in the vicinity of r = R, then the quantity

2
< %h >R a(r = R)

may be expected to be representative of the coronal outflow velocity at

r = R. Of this we shall say no more.

To summarize, in this section we have considered in some de-

tail the scattering of radio rays by an anisotropically turbulent solar

corona of approximately constant average refractive index (implying

nearly linear basic rays) for which the anisotropy exhibits a preference

for the radial direction only. For the case of highly pronounced aniso-

tropy we have succeeded in obtaining explicit expressions for the

parameters governing the statistical properties of the medium in terms

of the observed values of < 6q_6_ >R' < 6_6_>R" and < 6tgr6tg r >R" If,

however, the anisotropy is not large we have been able to describe an
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approximate procedure for deducing A(r), b(r), and < 6 2 > from the

observations. The discussion of the present section should prove of

value in detailed observational studies of solar coronal turbulence when

the assumptions of homogeneity (i. e. _o constant) and radial prefer-

ence hold. In this regard we should be here reminded that the values

of < 6 2 > determined by the methods discussed in this and the previous

section can be directly related to the statistical fluctuations of the

coronal electron density through use of equation (4. Z3).

We proceed next to a discussion of scattering when the coronal

turbulence exhibits in the solar equatorial plane a preference for the r,

8, and (p directions.

Anisotropic Turbulence with a Preference in the

Solar Equatorial Plane for the r, 8, and _) Directions

In this section we wish to extend our discussion of the scatter-

ing of nearly linear radio rays to the case where the coronal turbulence

exhibits, in the solar equatorial plane, a preference to the r, 8, and

directions, where the equatorial plane (or, as is nearly the case, the

ecliptic plane) is specified by _ = ft/Z, and contains the basic rays about

which fluctuations occur. The preference for the radial direction is

expected in virtue of the enhanced diffusion along magnetic field lines,

which we expect to be radial within about 30 R e . In the solar equatorial

plane the distinction between the @ and ¢p directions might be expected

if the coronal outflow were not strictly radial, but confined somewhat

to either the solar equatorial plane or to the polar regions; this possi-

bility has been suggested earlier by Hewish and Wyndham (1963). In

this case we choose the correlation function of equation (4.16):
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< 5/_(r 1) 6_(r 2) > =

< 52/_ > exp {- (r2-a2rl)2 rl 2(B2-b2 81)2 r12 (_02-d2_1)2}
(4.I03)

where a(r), b(r), and d(r) are the correlation lengths in the r, 8, and

_0 directions, respectively, and < 62/_ > is the correlation amplitude,

also a function of r. Equation (4. 103) is reasonable subject to

a,b, d << _ ' _ ' _[ --d-r J

a, b, d << > dr

(4. 104)

Now since we are here, as in the above two sections, consider-

ing scattering about nearly linear basic rays the same expressions for

the scattering parameters will be used here as were used above, namely

equations (4.28), (4.29), (4.32), and (4.33) for 6_(s), 5tgr(S), 5_(s),

and 5_(s). We may then immediately write (see equations (4.65)-(4.67)):

S S

< 6_5@ > = > ds'ds"_'2-
o o _o

(4. 105)

< 6Q6_ > =

S S f ))

o o _'o

(4. 106)

S S

_<6_(s')6_(s")> ds'ds"

o o

(4.107)
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S S

6tgr 'gr f f< > c--2 < 6/_(s')6/_(s") > -'---"-4"--ds'ds"

O
00

(4. 108)

where the indicated correlations are to be taken between points lying on

the same basic ray, and where for simplicity in writing we have taken

_o constant, a restriction which will be shortly relaxed.

Now the correlations in the integrands of (4. 105)-(4. 108) are

determined by the autocorrelation function (4. 103), with the coordinate

transform of equation (4.69). If we introduce a new variable r = s" s'

we may transform the integrals of equations (4. 105)-(4. 108) according

to

S S S S-S T

r

O O 0 -S I

(4. 109)

If a, b, d << s we may then, as has been shown earlier,

of the integration over (dr) to + _o to obtain

S S S +co

; f ds"ds' _ _ _ d'rds'

O O O _o_

extend the limits

(4. ii0)

The integrations over (dr) in (4. 105)-(4. 108) may be then carried out

directly. If we define the following quantities

Z
a

A V 1 (4. III)

dz

D V (4. 112)
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we may then obtain (c. f. equations (4.79)-(4.81)):

r 1 rz

< 6_6J2 >R =I + I (< 62_ >_ (I+A) I/Z
2_, "o 2b / (I +A-_)

r
R R r

rdr

3/2 /r2 - R2

(4. 113)

< 6n6n
zJ_

r 1 r z

R R r

1 rdr
(4. Ii4)

r 1 r z

<6fOf>R I t (l +A)I/2 rdr

<
_o

(4. 115)

f rl Ir2(< 62_ > b) (1 +A) 1/z rdr<6tgr6tgr>R = + 4 R 2 1/2¢
(/_t/c2) _Z° r (I + A --Z) rZ- Rz

R R r

(4.116)

We have implicitly introduced the assumption of spherical symmetry

and have assumed that the geometry of page 105 is appropriate. We

have also used the relation

< 6fbf >
2

<fph >

= < 6¢6@ >
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Equations (4.113)-(4. I16) are the desired relationships, ex-

pressing the mean squares of the scattering parameters 6_, 6_, 6f

and 6tg r as integrals over a basic ray of the parameters governing

the statistics of the coronal turbulence, for the case when in the equa-

torial plane the r, e, and q_ directions acquire special significance.

Only the following assumptions have been made:

i) _o _c°nstant' implying approximate linearity

of the basic rays

ii) spherical symmetry

iii) the basic rays be in the vicinity of the solar

equatorial plane

iv) anisotropic turbulence with a preference, in the solar

equatorial plane, for the r, e, and _ directions, and

a correlation function given by equation (4.16). This

implies that equations (4. 104) hold.

v) a, b, d<<s

vi) appropriateness of the geometry of page ll7 implying

"Ia, b, d<<Ir o

vii) appropriateness of the geometry of page 105

Now we would like to be able to utilize equations (4. 113)-(4. 116)

to determine the functions A(r), D(r), b(r), < 62 D >, and < fh 2 >R from

observations of< 6_6_ >R' <6_6_>R' < 6f6f>R' and <6tgr6tg r>R.

Unfortunately we have five quantities we would like to determine and

only four observational quantities; complete determination of the five

quantities is thus impossible. Let us see what can be learned from

(4. i13)-(4, ll6) however. We begin by noting that since for the linear

=_ 2
rays we are considering bL° 1 we may ascertain < fph >R directly



136

from equations (4. 115) and (4. 116):

< 6f6f >

fph2 I R< >R = --2 < 6t 6t
o¢ gr gr >R

(4. 117)

Thus < fh 2 >R may be determined. As mentioned earlier the inter-
1-"

of < fh 2 >R in terms of the turbulent behavior of the mediumpretation

is not our purpose here; we note only that it should be a function of the

scale lengths and velocity spectrum of the turbulence.

Let us confine our attention to equations (4. 113), (4. 114), and

(4. 116) for< 6_6_ >R' < 5_6_>R' and < 6tgr6tg r>R, and let us first

recall what we found when D(r) = 1, the case of the last section. We

there asserted, in anticipation of the numerical examples later in the

present chapter, that the effect of a non-zero A(r) on < 6_6_> R and

< 6tgrStgr >1% is to increase these quantities by no more than some

10-15%, and that the effect of anisotropy may be roughly considered

to manifest itself only in < 6_6_ >R ' such that

a(r : R) =/ < 6_6_>R

l (4. 1 1 8)
b(r = R) < 6_6_ >R

Thus we were able to utilize < 6_6_> R and < 6tgr6tg r >1% to ascertain,

via equations (4.96) and (4.97), < 62_ > and (b) as functions of r, while

A(r) could be found from < 6_6_> R and < 6_6_ >R via equation (4. 118).

Now by analogy with the case just discussed we expect that in the present

case also the effect of a non-zero A(r) will appear only in < 6#6# >R "

We thus approximate equations (4. 114) and (4. 116) as
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r I r 2

<6Ft6_>R =_ f(<62_>/1+ rdrZ (4. 119)
2¢r" /_o b ] l_(-_/rZ- RZ

R R r

< 6tgrStgr >R

z)

r 1 r 2

k o r/ r 2- R 2
R R

(4. 120)

These two equations contain the three unknowns < 52 >, b(r), and

D(r), and therefore do not form a complete system. By the same

token, since D(r) appears in the equation for < 5_5_>R, we cannot

utilize equation (4.118) to estimate A(r). To make any progress we

must make some assumptions about the behavior of the coronal turbu-

lence.

Now it should be clear that if we assume the functional form of

the behavior with r of any one of the quantities < 62tt >, b(r), A(r) or

D(r), then the functional forms of the behaviors with r of the remaining

quantities may be found from < 5_6Ft> R, < 5_6¢ >R' and < 6tgrStg r >R

via equations (4. 113), (4. 119), and (4. 120). In general we will have no

apriori information concerning the behavior of b(r) and D(r), and we

shall always regard these as unknown quantities. However, let us first

suppose that we have some knowledge, postulated or experimental, of

the average electron density. Then with the help of equation (4.23) we

can postulate the form of the behavior of < 52 D > with r. Equations

(4. 119) and (4. 120) may then be inverted to allow us to ascertain the

behavior with r of b(r) and D(r); the proper inversion is (c. f. equations
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(4.96) and (4.97)):

co

1 = _to 1 d I
b(r)D(r) - _ > _3/2 H-{

r

r <6 dR
1% "6_>R --U_-

] R z- r
2

co

b(r) = D° c2 d _ 6t
> _.3/2 _-_ <6tgr gr

r

(4. 121)

r dR
>

R R/R2- r2

(4. 122)

from which we may determine the functional forms of b(r) and D(r) for

a range of r equal to that range of R for which < 6_6_]> R and <6tgr6tg> R

have been found. Having thus found the forms of b(r) and D(r), the form

of A(r) may be found as follows. If the bulk of the contributions to the

integrals of equations (4. 113) and (4. I19) for < 6_6_ >R and < 6_6_]> R

were concentrated near r = R we could then write (c. f. equation (4. 118))

1 a(r=R) = /<6_6_]>R

b(r=R) _ < 6_5_ >R
=R)

(4. 123)

We expect equation (4. 123) to be closely correct, and we thus see that

having found the form of D(r) we may use this relationship to find

a(r)/b(r).

Alternatively, we may assume that we have some knowledge of

the functional form of a(r)/b(r). Then equation (4. 123) may be used to

ascertain the form of D(r), and equations (4. 121) and (4. 122) can then

be used to find the forms of the behavior with r of b(r) and < 6 2tt >
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In practice, however, it is expected that better results will be obtained

by starting with some knowledge of the behavior of n(r), and thus < 6 2 >,

and then deducing the behaviors of b(r), D(r), and a(r)/b(r).

It should be clear from the above discussion that if the functional

form of < 62 > is initially assumed known, then observational data of

both < 6_6_> R and < 6tgr6tg r >R are necessary in order to determine

the form of D(r). Hewish and Wyndham (1963), however, sought to de-

termine D(r) from measurement only of < 8_5&_> R, and therefore found

it necessary to assume not only the form of < 6 2 >, but also that of

b(r); they took b(r)_-, r and concluded that the solar corona exhibited

non-radial outflow, i.e. D(r) _ 1. However, as we shall see, the data

cited by them is consistent with the radial outflow model if b(r) =

constant beyond some 10 solar radii. The constancy of b(r) in that

range is consistent with the results of Hewish and Dennison (1966),

leading us to the tentative conclusion that existing radio scattering

data supports the radial outflow model. All this serves to point out

that care must be taken in the treatment of equations (4.113), (4.114),

and (4. 116).

One final point. The inversions of equations (4. 113), (4. 114),

and (4. 116) may be dealt with exactly if A(r) is sufficiently large so that

R 2
A -'2- >> 1 (4. 124)

r

over the range of (r) for which < 62 > is of sufficient magnitude to

contribute significantly to the integrals. For the model corona speci-

fied by equation (2.37) this implies typically
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a(r) _ 4

If (4. 124) holds the proper inversions are {c.f. equations (4.87)-{4.89)):

2 ; < 6_6_

1 __ "o ! d >R
b(r) D(r) -r<-_t > 2_ 3/2 _ r dR (4. 125)

R 2- r
r

4 2 ;r < 6t 6t
b (r) = /_o c d gr gr >R dR (4. 126)

r<6_ > _--3/2 _ v/'a 2- r2"
r

< 6_6_ >R
d r
_[_ dR

A(r) : 2 r v/R 2- r2

r _ R2 (4. 127 )
d < 5_6_ >R dR

_y_Jr R 2 2
r / - r

These expressions readily yield the functional behavior of b(r), A(r),

and D(r), if the form of < 62_ > is presumed known, for a range of r

equal to that range of R for which one has experimental measurements

of < 6_6_> R, < 6_b6_b >R' and < 6tgr6tg r >R " They are valid subject to

(4. 124), an assumption which could be checked from the results of the

expressions above.

To summarize, we have in this section considered the scattering

of radio rays by an anisotropically turbulent solar corona of approximately

constant average refractive index, implying nearly linear basic rays,

for which the anisotropy exhibits a preference, in the solar equatorial
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plane, for the r, e, and_ directions. Our discussion has followed

closely that of the previous section, where we considered the situation

of preference for the radial direction only, but with the modification

that our system of equations is no longer complete, requiring us to

assume some apriori knowledge of one of our unknown quantities < 62 >,

b(r}, A(r}, or D(r); in practice the quantity which will be assumed known

will usually be < 62_ >. The primary usefulness of this discussion will

be the investigation of the extent to which the coronal outflow is radially

directed, under the circumstance that we know beforehand the behavior

of one of the quantities governing the statistical behavior of the corona.

This circumstance may occur to sufficient accuracy only with some

difficulty, and one may instead have to content himself with the assump-

tion of radial outflow and proceed as in the previous section to find, to

the degree of accuracy of the assumption of radial outflow, the quantities

< 62t1>, b(r), and A(r).

In the next section we shall digress somewhat to consider some

of the ideas of this section for the special case when the quantities

governing the statistics of the medium exhibit simple power law behavior.

Power Law Behavior

It is our purpose here to discuss some of the foregoing ideas in

the circumstance that the quantities < 6 2it >, b(r), a/b, and d/b all ex-

hibit power law behavior. If the coronal electron density is supposed

to vary as i/r n we see from equation (4.23) that we may then expect

< 62 > to vary as 1/r 2n. We shall therefore write
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<6z >
< 62l_ > = o (4. 128)

Zn
r

®

For the model coronal electron density specified by equation (Z. 58) we

see that for (r/R e ) _ 6 we expect n = 2. In similar fashion we shall

m
suppose b(r) to vary as r , and write therefore

m

b(r) = b ° R ° --_
®

(4. 129)

We shall further suppose a(r)/b(r) to vary as r

2_
we expect A(r) to vary as r , and thus we write

Then if a/b is large

A(r) =A O (_--) ; A(r)>> 1 (4.130)
®

Finally, we shall suppose d(r)/b(r) to vary as r , as suggested by

Hewish and Wyndham (1963), and we may then write

2_

D(r) = (-_-) (4.131
®

where it has been implicitly assumed that the coronal outflow is radial

at the solar surface, but becomes confined somewhat to the solar equa-

torial plane (_< 0) or to the polar regions (A> 0) at greater distances.

Equations (4. 128)-(4. 131) are the assumptions underlying this discussion.

We shall concern ourselves now with equations (4. 113), (4. 114),

and (4. 116)for the scattering parameters < 8_5_ >R' < 8_8_>R' and

< 5tgr6tgr >R " For our present purposes we shall assume that

r 1, r 2 >> R, or that the bulk of the contributions to the integrals occur
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near r = R; we may then extend the upper limits of integration in (4.113 ),

{4. 114), and {4. 116) to infinity. We shall furthermore confine our atten-

tion to those situations in which A[ R2! /// r 2 is either small or large com-

pared to unity over the range of {r) in which significant contributions to

the integrals occur. It is then clear that we shall be concerned with

integrals of the form

o_

n

R r

rdr

r _ R 2

where (n) need not be an integer.

ated; the result is

This integral may be readily evalu-

; 1 rdr fir r(_)n = n' (4. 132)

R r /rZ_ R z 2R n-1 r( z )

where I" (z) is the Gamma function. Now as I'(z) has no zeroes along

the real axis, but poles at z = 0, -1, -Z ..... we require for conver-

gence of (4.13Z) thatn_ 1, -1, -3, -5 ... If, however, n = 1, -1,

-3, -5 etc., we do not expect our scattering parameters to become

infinite, for then we cannot justify extending the limits of integration

of (4. 113), (4. 114), and {4. 116) to infinity.

Now we may insert equations (4. 128)-(4. 131) into our equations

for < 5_5@ >R' < 5_5_>R' and < 5tgrftg r >R and, with the aid of equation
R 2

(4. 132), carry out the necessary integrations. If A -2- << 1 we obtain
r
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(4. 133)

2_
I-" (z(n+A)+m-I ) <622 >o

F (2(n_'_)'_rnz) bo
(4. 134)

< 6tgr6tgr >R

e <6_> b
0 0_t '-2 2n-m

(4. 135)

where we have, since the basic rays are nearly linear, taken Do

R 2
If, on the other hand, we may take A Z >> 1 we then have

r

N

= 1.

< >n

F
2Tt

F

(2(n+_)+m-4 ) < 6 22 >o

(Z(n+_)em- 3 ) A bZ o o
(4. 136)
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1-" (2(n+A)+m-2)2 < 52/_ >o
2_'

F I 2(n+_)+m- 12 ) bo

<6"6">R = ' (RRe) 2(n+A)+m-1 (4.137)

Re < 6 2/_ > b

"-"2- F {2n-m-l) o o

< 6tgrStgr>R = c 2 (4. 138)

where we have again taken _o ~ 1. Equations (4. 133)-(4. 138) are our

desired results for < 8_6_ >R" < 8f_Sf_>R' and < 6tgr6tg r >a as functions

of (R/R e) when the radial anisotropy is either small or large, and the

power law relations of equations (4. 128)-(4. 131) hold. We see that when

the coronal turbulence exhibits power law behavior, so also do the ob-

served parameters. Thus if one finds power law behavior of < 6¢8¢ >R'

< 8f_6_> R, and < 8tg#tg r >R then one may assume that < 62_ >, b(r),

a/b, and (d/b) also behave according to simple power laws. We note

also that a(r)/b(r) does not affect < 8_8f_> R and < 8tgr6tg r >R; thus the

power law behavior of these latter quantities implies simple power law

behavior of < 8Z >, b(r), and d/b. Similarly, since the effect of

d(r)/b(r) does not appear in < 6tgr6tg r >R a power law dependence

of this quantity alone implies power law behavior of < 6 2 > and b(r).

Now what may be learned from relations (4. 133)-(4. 138)? Let

us first consider only < 8_8_> R and < 8tgr6tg r >R" From equations
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(4. 134), (4. 135), (4. 137), and (4. 138) we see that the slopes, on a

log-log plot, of < 6a6aN and < 6tgr6tg r >R vs (R/R e) are the same
R 2

when A -'2- is large as when it is smaI1. This seems to impIy an in-
r

dependence of these siopes from the behavior of a/b. Now, as the

numerical examples later in this chapter will indicate, we have reason

to believe that the independence of the slopes of < 6_6_>R and

R 2

< 6tgr6tgr >1% from the behavior of a/b will hold true even when A -2
r

is neither small nor large. Thus the slopes of < 6_6_>i_ and < 6tgr6tgr>R

provide two relations for the three quantities m, n, and A:

2(n +A) +m - 1 = - slope <6_6_> R (4.139)

2n - m - 1 -- - slope < 6tgr6tg r >R (4.140)

If the coronal outflow is assumed radial (A = 0) these equations allow

determination of (n) and (m), that is the functional behavior of n(r) and

b(r). If, on the other hand, we presume to know the functionaI form of

the electron density, i.e. if we know (n), these equations then enabie

us to determine (m) and (A). If we thereby find A _ 0 we may be ied

to question the radial outflow model. Now regardless of how we may

choose to interpret the slopes of < 6_6_> R and < 6tgr6tg r >R' once

they are determined the appropriate values may be used in the argu-

ments of the Gamma functions appearing in (4. 134) and (4. 135), or

(4. 137) and (4. 138), and the values of < 62_ > and b may be then
o O

readiiy found from the observational data. The oniy probIem is

Future references to slopes wiI1 imply a log-log plot.
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whether to use the first pair of equations or the second, and this de-

R 2
pends on whether we suppose A --2" to be large or small. This may

r

be ascertained by examination of < 6_b6_ >R' as we shall see. At any

rate, the difference in the obtained values of < 62 > and b for the
O O

two cases is not great.

We now examine equations (4. 133) and (4. 136) for < 6_6_ >1%"
R 2

We first note that if we presume A --2 << i we have
r

2n + m - 1 = - slope < 6¢6_ >R (4. 141)

a relation which, when combined with equations (4. 139) and (4. 140),

enables us to determine m, n, and _. If, on the other hand, we pre-

R 2
sume A-2 >> 1 we may write

r

2(n + _) + m - 1 = - slope < 6_6@ >R (4. 142)

This equation is to be considered together with (4. 139) and (4. 140). If

we assume the coronal outflow to be radial (A = 0) we may use these

three equations to find n, m, and _. Alternatively, we may presume

to know the behavior of the coronal electron density, that is we may

presume to know (n), and equations (4. 139), (4. 140), and (4. 142) allow

us to find m, ,_, and a. Finally, we may presume to know that a/b is

constant over some range of (r) so that _ = 0, and our three equations

will then enable us to ascertain n, m, and A. This latter assumption

is of some importance, for the subsequent numerical examples indicate

R 2
that if a/b is constant, then even if A --Z is neither large nor small we

r

may still employ equation (4. 141) which, together with (4. 139) and

(4. 140), allows determination of n, m, and A. Thus we have given
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some insight into how, with one of several possible appropriate as-

sumptions, we might determine n, m, a, and A. But we still must

R 2
answer how we can ascertain whether A -_ is large, small, or

r R 2
neither. We can proceed as follows. We might first assume A -2- >> 1.

r

Then from equations (4. 136) and (4. 137) and the observed values of

< 8_8_ >R and < 8_8_> R we may determine A o. If the value so deter-

R 2
mined is consistent with A--2 >> 1, we have made the correct guess.

r R 2
Alternatively, we may assume A -2- << 1. Then equations (4. 133) and

1- g .(4. 134) may each be used to determine < 8 >/b ° If the two values

so obtained agree we have made the proper guess. If, however, neither

R 2-
of these assumptions yields consistency, then A -'2 is neither small

r

nor large, and we must then content ourselves to use equation (4. 123)

to find A(r), or, alternatively, compare numerical calculations based

on equations (4.113) and (4. 114) with the actual data.

Thus we have in this section discussed the scattering of radio

waves about nearly linear basic rays for the special case when the

parameters governing the statistics of the medium exhibit simple power

law behavior. We have found that then the scattering parameters

< 8_8_ >R' < 8_8_>R' and < 6tgrStg r >R can be expected to exhibit

power law behavior also; we thus expect these parameters to obey a

power law if R _ 6 R o, where, for the model corona specified by

equation (2.37), we expect n(r)--_ I/r 2. We were then successful in

understanding how from observations of < 8_8_ >R' < 8_8_>R' and

< 8tgr6tgr >R we might determine < 82_z >, b(r), a(r)/b(r), and

d(r)/b(r). The value of this discussion should be apparent when we

realize that the available data for the scattering of astronomical
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sources indicates power law behavior beyond some 10 solar radii {see,

for example, Hewish and Wyndham {1963}).

We turn now to consider the effects of magnetic field curvature.

Magnetic Field Line Curvature: Solar Equatorial Plane

In this section we consider the forms taken by the scattering

integrals when the curvature of the general solar magnetic field lines

becomes important. At the outset of this chapter we suggested that the

field is no longer radial beyond some 30 R . But how will this affect
®

the radio scattering? It seems reasonable to suppose that if anisotropy

in the turbulence is due to enhanced particle diffusion along the magnetic

field direction, as is believed to be the case at least in the lower coronal

regions where filamentary structures are optically visible and appear to

be due to the general and local magnetic fields, then the coronal turbu-

lence will exhibit a preference not for the radial direction, but for the

direction of the {curved) magnetic field. Thus since the coronal turbu-

lence can be expected to exhibit a preference for the direction of the

non-radial field, we might expect to see this effect manifested in the

scattering phenomena. It is this possibility we wish to examine in the

present chapter. For simplicity we shall restrict our discussion to

those situations where the basic rays may be regarded as lying in the

vicinity of the solar equatorial plane; this provides the maximum effect

and the simplest geometry.

We begin with the following geometry appropriate to our discus-

sion:
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S=S
0

magnetic field
line

,,4

R

/

direction of
field at s

observer

With (_) and (8) thus defined we may take as our appropriate statistical

correlation function that of equation (4.17):

< 6_(r l)6_(r 2)> =

<62_>I ek-pl- 4 [c°s _ (r2- rl) - (sin_) rl(@Z-@l)]Za

r 1 (_2- _i)2 + [sin

2

_(r 2- rl) + (cos,_) r I m2- 01)] }
b z

(4. 143)
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where (a) is the correlation length in the magnetic field direction, (b)

the correlation length in the transverse direction, and < 6 2 > the
rl

correlation amplitude; these quantities are to be regarded as functions

of (r 1), corresponding to the assumption of spherical symmetry. The

validity of (4. 143) implies satisfaction of conditions (4.15) and (4.18),

as well as restriction to the solar equatorial plane.

Now equation (4. 143) can be of use only after transformation

from the (r, 0, _) coordinate system to the (s, _, z) system. Equations

(4.69) apply, and insertion of these into (4. 143) yields)

< 6 (rI) z)>

=<62 >rleXp {_ (s2_ Sl)2 (sinZa (zy- _) + cOsZb Z(y - a))

2

-<_2-_1) ( cOs2 (7 -_)Z + sin2b Z(7 -_)>. (Z2-Zl )2 (4. 144)
a b

+ 2 sin (7- _)c°s (7- _)(s2-Sl)(_2-_1)<-_ - _)}a

Now we note that this function is identical to that in equation (4.70),

where the preference was for the radial direction, but with (7) replaced

by (7 a). This is a convenient result, for it permits us to use all the

results of the discussion where the preference was for the radial direc-

tion, but with (Y) replaced by (7 - _). Thus from equations (4.77) and

(4.79)-(4.81) we readily obtain:
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z,/_

rI .rz

< 6Z_ >//_o ] b ]
r

(i + A) I/z rdr

3/Z . Z {4. 145)

<s_>R_
z,/_

rI rZ

< 52 >I (I +A) I/Z rdr
Zl,o'b] (,+-cos _,.,)_/'/...

r

(4. 146)

rI rZ

4_ 5/Z f 2

<Ph>R R R

(I + A) I/z rdr

<6% >bl.r_+Aoo_'C_--I)_/'/.'__'

(4.1.47)

< 5 tg r 5 tg r >R

r Z

J.c<0'-b).o4
r

(1 +A)I/Z rdr

(_+_cos',,._)_/'/...

-_. 148)

where, corresponding to our assumption of spherical symmetry,

< SaD >, (b), and (A) are functions of (r), and the geometry of page

is assumed to apply. The angle (y) is specified by

-1
Y : tan

S - S
O

R
(4. 149)

while (a) may be any function of position along the basic ray.

simple spherical outflow model, however, we may write

= tan-1 r_

For a

(4. 150)
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(Parker (1958)) where V is the (constant) coronal outflow velocity, and

is the angular rate of rotation of the solar equatorial regions. Equa-

tions (4. 145)-(4. 148) are the desired results, expressing the mean

squares of the scattering parameters 5¢, 6C_, 6f, and 6t as integrals
gr

over a basic ray of the parameters governing the statistical properties

of the coronal turbulence for the case where a non-radial solar mag-

netic field is effective in defining the turbulent anisotropy. They assume

specifically the geometry of page 150 but if the basic ray is on the "other

side" of the sun equations (4. 145)-(4. 150) all hold, but with (R) con-

sidered negative in (4. 149) only.

..... 1..1 _1. _ _j
Now we wOuzu _ to invert these equations to obtain < 5 2

A, b(r), and _(r) as functions of the observed quantities < 6V;6_ >R'

< 6(26_>R, < 6f6f >R' and < 6tg#tg r >1%" There is little we can do

along this line however. If we note that _o 1 equations (4. 147) and

(4. 148) yield

2 1 < 6f6f >R

>R:
--2 < 6tgrOtg r >R

(4. 151)

a relation which could be of some use in examining coronal velocities

if we knew the correlation length a(r). Any further statements we

make will rely on what may be learned from the numerical examples

of the next section. We shall there see that for a reasonable model of

the magnetic field curvature the values of < 5_5_> R and < 6tg#tg r >R

appear not to be affected by anisotropy and therefore the approximate

relations (4. 96) and (4.97) may be used to find < 52_ > and b(r). In

addition, for R/R e less than about 100 it appears that < 6V_5@ >R is not
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affected by anisotropy very much differently than when there is no field

line curvature. Thus to within an accuracy of some 20% equation (4.98)

may be used to find a/b. (If A R2/r 2 >> 1 better accuracy may be ob-

tained by use of equations (4.87)-(4.89)). However, it should be men-

tioned that for R/R _ I00 the effect of the field line curvature seems
®

to be to change the slope of < 6_6_ >R slightly indicating that < 6_6_ >R

is not a good quantity to use in assessing the validity of the radial out-

flow model (see the previous two sections). More significant effects

of the field curvature are observed beyond about I00 R®, as shall be

seen in the next section.

This case will be considered no further at present, but we shall

return to it in the numerical examples of the next section.

Numerical Examples

We conclude the Chapter with a brief presentation of the results

of machine evaluations of the scattering integrals of this chapter. We

shall suggest several reasonable models for the behavior of < 52 >,

a(r)/b(r), and b(r), and discuss the resultant scattering in terms of the

present data and the methods already proposed for deducing the param-

eters governing the coronal statistics from the scattering observations.

We present first the models used in the calculation, beginning

with < 52_ >. We had earlier, equation (4.23),

4

52/_ ¢¢po < 62n> (4 152)< >= Z4 Z
4_o _ n

where

2
2 4_'e n (4.153)OJ =
po m
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2Now we expect < 62n > to be some fraction of n :

< 62n > e2 2= n (4.154)

thus defining ¢. Equation (4. 152) becomes then

_4

< 52_ > = c2 po 2 4 (4. 155)

4/_ o

We should mention that we expect c to differ from unity if the root

mean square of the local electron density fluctuations differ from the

average density or, alternatively, if the density fluctuations do not fill

all space, but are rather distributed "spottily" along a ray. Now for

the average electron density we shall confine ourselves to the coronal

mQdel used throughout this work:

{1.55 2.99'_ 106
n{p) = I08 k p--_- + p--iT/ + (4 156)

Equations (4.153), (4. 155), and (4.156) define <62 >.

We shall next specify a/b. The simplest situation is

a = constant

and several calculations shall be made for this case. However, we

several times pointed out that we expect anisotropy to be the result of

enchanced particle mobility along magnetic field lines. If we regard a

statistical density fluctuation as appearing somewhere in the corona and

then being carried outward by the general outflow, it then appears that

the enhanced mobility along the field lines will result in a/b increasing

with (r). How rapid will this increase be? If the correlation length

in the direction of the magnetic field line is determined by the rapid

motion of particles along the field we may then write approximately,
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regarding the corona as collisionless and the pressures parallel and

perpendicular to the magnetic field as equal,

da _=/ kTHY mp

where the proton mass, m
p'

electrons in the fluctuation are, over a Debye length, "linked" to the

protons. Since the coronal Debye length is expected to be small com-

pared to the fluctuation scale size the heavier protons will dominate the

motion of a density fluctuation. If we now denote by V the velocity at

which the fluctuation is carried outward we may write then

appears since the faster, but less massive,

da _ 1 / kT {4.157)

"V _ mp

a relationship having meaning only if

V> J kTmp

we shall see that this relationship is satisfied for a reasonable coronal

model. If we take T = 106 OK and V in km/sec {4. 157) becomes

da _ 90- {4. 158)
Y

{Now we expect V to be on the order of several hundred km/sec {Parker

{1960b)} showing that we may consider the inequality above to be satis-

fied. ) Introducing the quantity

r
p = R

®
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equation (4. 158) becomes

da = 630 x lO 5

v

If for V we take 100 km/sec, a reasonable value for the mass efflux

above the solar surface, we obtain

da 03
= 630 x 1 km (4. 159)

Now denoting by (a o) the value of a(r) at the solar surface equation

(4.159) yields upon integration

a = 630 x 10 _ Co - l) + a (4. 160)
o

Thus we expect (a) to increase very rapidly with p, expiaining the

formation of coronal fiiaments very low in the corona. But what about

a/b? Since we expect the transverse correlation length to be nearly

constant, or to increase onIy slowIy with O, we therefore expect a/b

to increase rapidly with p also. Now as it is not our purpose here to

model accurately the behavior of a/b (indeed, this is an important area

for future research but not within the scope of this work) we shall

merely suggest several forms for a/b which increase with p, which

assume isotropy of fluctuations formed at the solar surface (i. e.,

a(r = R ) = b (r = R )), and which are convenient for computation.
6) ®

V_:e choose

a _

g .I _-I) + i (4. 161)

a

g = P (4. 102)
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a _..

I0 (p-l) + i (4.163)

Thus we have made plausible values of a/b which increase with

distance from the Sun. However, existing observations seem to indicate

values of a/b which are either constant, or may perhaps decrease with

p beyond some 10 solar radii (Hewish (1958), Gorgolewski and Hewish

(1960), Hogbom (1960), Erickson (1964)). This seems to imply an in-

stability of the "streamers" formed low in the corona. We therefore

take for our numerical examples a number of convenient forms for a/b

which decrease with increasing p, approaching unity (isotropy) as

p -_ _. We choose:

a : 1 + _1 (4.164)
b p

a = 10
_. 1 + --. (4. 165)P

a = I00
_. 1 + (4. 166)P

Equations (4. 161)-(4. 166) represent forms convenient for compu-

tation, and not proposed to represent properly the coronal behavior. We

expect that the actual behavior will exhibit anisotropy rapidly increasing

immediately above the solar surface but, due to instability, shortly de-

creasing to constant values of a/b at higher levels in the corona. The

proper definition of this behavior is an area for further study, both theo-

retical and experimental. Theoretical studies of this point are essentially

non-existent, as are high frequency scattering observations through the

lower corona where, due to the very rapid initial increase of a/b, the

instability might be expected to occur.
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We next specify the kinds of behavior we might expect for the

transverse correlation length, b(r). Hewish and Dennison (1966) ob-

served a constant correlation length of 200 kilometers between

R = .4 AU and R = .8 AU, and we shall take therefore as one of our

examples

b(r) = 200 km (4. 167)

Hewish and Dennison point out that this value is not much greater than

the proton gyro-radius at those distances; we pursue this suggestion

here. The root-mean-square proton gyro radius is

<vi2 >
R = (4. 168)

g eB/mp

Letting

1 2
m<v 1 > =kT

we obtain

2kT

• Rg eB (4. 169)

m 172
P

Now since the curvature of the general solar magnetic field lines is

not great over most of the corona within the radius of the earth, we

may to a good degree of approximation write

B
B = o--2 (4. 170)

P
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where B ° is the strength of the general solar magnetic field at the

solar surface, and is on the order of one gauss. Combining equations

(4. 169) and (4. 170) yields

R = p2/2kT (4. 171)
g eB

O

--r72
m

P

The coronal temperature may be most simply specified by assuming

that coronal heating maintains a constant temperature, T o, out to

= , and adiabatic expansion beyond. If we assume a specific heatP Po

ratio of 5/3 we obtain

Rg : 0o 2/3 _e B 04/3 (4.172)
O

m I--/2
P

Thus we obtain the important result that in the region of coronal adia-

Rg P 4/3 =baticity --- . Now if we take T o 106 OK and require, as indi-

cated by direct satellite measurement, a temperature of 105 °K in the

- = 1 gaussvicinity of the earth, we find then Po _ 6. Then with B °

equation (4.172) yields

R = . 045 p 4/3j' km (4. 173)
g

At . 6 AU (0 = 120), where Hewish and Dennison found a correlation

length of some 200 kilometers, we obtain Rg 27 kilometers, a quan-

tity smaller by a factor of about 7 than the observed correlation length;
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it thus appears that Hewish & Dennison did not take into account the

adiabatic variation of temperature. In spite of this discrepancy we

shall retain the functional dependence on p4/3, but to make our value

coincide with that observed near . 6 AU we shall take

b(P) = . 30 p4/3 km (4. 174)

The third example we shall choose for the transverse correla-

tion length , b{p), is a correlation length directly proportional to p,

corresponding to the notion used by many workers that the turbulence

behaves as, and corresponds to, the coronal rays or streamers. We

wili us e

b(p) = 30 p km (4. 175)

a figure corresponding to the scale size of the photospheric (p=l) micro-

turbulence (Kuiper, ed., "The Sun," University of Chicago Press, (1953),

pages 28, 175-176).

Having thus specified < 6% >, a/b, and (b) as functions of p for

a number of interesting cases, we need only specify c_(r) to complete

this prelude to the numerical calculations per se. For a simple coronal

model we may write for the equatorial plane:

c_ = tan-1 (r_)-V-- (4. 176)

where _ is the angular rate of the solar rotation and V the (constant)

outflow velocity of the solar wind. We shall in our calculations take

= 14.38°/day and V = 300 km/sec.
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To recapitulate briefly, we have specified the following quantities

as prelude to the numerical calculations to follow. < 8 _ > has been

specified as a function of P to correspond to the model average corona

we have been using throughout this work, equation (2.49). The coronal

anisotropy, a/b, has been chosen as: i) constant; ii) increasing with p,

but isotropic at the solar surface; iii) decreasing as p increases, ap-

proaching isotropy as p -* _ Case (ii) is consistent with the enhanced

mobility along the magnetic field of particles released at the solar sur-

face, while case (iii) implies the existence of a mechanism which tends

to destroy pronounced anisotropy. The transverse correlation length,

(b), has been chosen as: i) constant, corresponding to the observations

of Hewish and Dennison; ii) proportional to p4/3, that is, proportional

to the proton gyro-radius in an adiabatically expanding corona with an

approximately radial magnetic field; iii) proportional to p, correspond-

ing to the behavior of coronal rays and streamers. Finally, the mag-

netic field curvature has been specified for a constant solar wind

velocity of 300 km/sec. Once again, we are reminded that the functions

thus chosen are primarily for computational convenience, and are in-

tended to bear only some suggestion of physical reality; this reflects

the fact that a great deal of work yet remains to be done on the physics

of the coronal turbulence per se; but this is not our purpose here and

we proceed now with the numerical examples.

All our calculations will be based on equations (4. 145)-(4. 148)

for < 8_6_ >R' < 8516I_>R' < 6fSf >R' and < 6tgrStg r >1%; in all cases we

shall consider both source and observer to be 1 AU from the sun, i.e.

r 1 = r 2 = 200 R®. We shall seek to see what values of the scattering
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parameters might be observed for the forms of < 62b_ >, a/b, (b), and

(a) specified above. In this connection we must recall that < 6tgr6tg r >R

does not represent an observed quantity; if < 6 tgr6 tg r >o denotes the

value of < 5tgr6tg r > we might actually expect to observe, we may write

then

<6tgr6tgr>o = <6tgrStgr>R

F(n, m) < 6_6# >R

(4. 177)

as has been derived in the Appendix (equations (A. 53), (A. 6Z), (A. 63))

for n(r)---I/r n and b(r)--_rm The function F(n, m) generally lies be-

tween 1 and I0 and is defined by equations (A. 62) and (A. 63). As is

discussed in the Appendix, the final term can be quite large, depending

on R and _, and the values of < 6tgr6tg r >R we calculate numerically

here represent therefore a lower limit to the values of < 6tgr6tg r > we

expect to observe. We calculate < 6tgr6tg r >R numerically, though,

rather than < 6tgr6tg r >o " since the former quantity is that used above

in the body of this chapter.

Before presenting the numerical results we make one simpli-

fying observation. In equations (4. 145)-(4. 148) we may, for the linear

basic rays under consideration, neglect the frequency dependence of

_o(r). Then the frequency dependence of the scattering integrals is

due solely to that of< 62_ > , and by equation (4. 152) we may readily

conclu de:
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I<6_5_ >R _ 17sb

1

/'b

Jb
¢< 6f6f> R _ -it-

(4. 178)

These relationships allow us to do the numerical calculations for one

frequency only (100 MHz), the values for other frequencies being

readily found from equations (4. 178).

We begin by examining the scattering effects of coronal turbu-

lence exhibiting a preference for the radial direction only (a = 0), and

uniform anisotropy (a/b = constant). Graphs 3-11 present values of

the scattering parameters f< 8_b6_b >R' J < 6_8_>R' f < 6tgr6tgr >R'

andf<OfOf >R for constant values of a/b ranging from 1 to 40. We

may make the following observations:

i) The slopes of the calculated curves for R/R ° > 6 (where,

according to equation (4. 156), the electron density obeys a simple

power law) are those expected on the basis of equations (4. 139)-(4. 141)

with n = 2.

ii) A constant value of a/b does not affect, in the region where

a power law behavior description is appropriate, the slope off< 6_5_ >R'

in accordance with equation (4. 142).

iii) Even for large values of a/b the effect of anisotropy is to

increaser< 5_6_> R, Or< 6tgr6tg r>R, andJ-< 6f6f> R by only some
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10-15%. This observation has been the basis of numerous approxi-

mations during the course of this chapter; for example, it formed the

basis upon which equations (4.93)-(4.95) have been written.

Graphs 12-14 display, for a variety of (constant) values of a/b,

the anisotropy in angle of arrival (i.e. J'< 6_5_>R/Cr< 6_6_b >R) to be

expected; shown also for comparison are the values we would expect

if equation (4.98) were strictly true. It is generally seen that:

iv) For values of a/b less than about 5 (otherwise we would use

equation (4.89)) use of equation (4.98) to estimate a/b will result in less

than about 25% error. This error becomes less the more rapidly b(p)

zn ..... es with p, {- accordance with our expectations, for then a more

significant part of the contributions to the integrals for < 6@6@ >R and

< 61"161_>R occurs in the vicinity of r = R, and this was the assumption

upon which (4.98) was based.

Now how do the calculated values of Graphs 3-11 compare with

the existing data? This is in general difficult to ascertain in view of the

wide variabilities that occur in the observations in the course of a solar

cycle. However, several remarks may be made. First, the root-mean-

square fluctuations in ray angle of arrival seem to scale accurately as

1/f 2 (Hewish (1958)), in accordance with equations (4. 178). Second,

simple power law behavior is observed for R/R® _ 10, as might be ex-

pected from the electron density function of (4.156). The slopes of

_< 6_6i_> R and /< 6@6@ >R generally seem to lie in the vicinity of -1.5

(Hewish and Wyndham (1963)), but show some steepening towards sun-

spot maximum (Hewish and Wyndham (1963), Erickson (1964)). The

slope of -1.5 is consistent with a mean coronal electron density varying



166

as 1/r z and a constant correlation length, (b). Thus, since, according

to Parker's solar wind model, we have reason to expect a 1/r 2 depend-

ence of the electron density for R/R e > 10 it appears that the observa-

tions of Hewish and Dennison (1966) of a constant correlation length

between . 4 and . 8 AU may in fact be extrapolated down to at least 10

solar radii. The apparent steepening towards solar maximum is not

so readily explained, however. It may suggest that as solar activity

increases the coronal structure becomes more filamentary, i.e. (b)

becomes more nearly proportional to p. This notion is consistent with

active regions on the sun producing far reaching coronal filaments

through partinle ejection. Alternatively, the apparent steepening may

be due to a steeper radial gradient of the electron density. The i/r 2

dependence follows from the conservation of mass, nVr 2 = constant,

when the solar wind velocity is constant. A constant V is expected on

the basis of Parker's work for reasonable coronal models (Parker

(1960b)). Ho_vever, it is also a consequence of Parker's model that

an increase in the coronal heating results in an increase in the distance

from the sun of the transition from a region where V increases with (r)

to the region where V is nearly constant. This transition occurs in the

vicinity ofp = Po' that is, where the adiabatic expansion begins. Now

from the conservation of mass, nVr 2 = constant, it is apparent that if

V cannot be considered as constant, but increases with (r), then the

density will exhibit a steeper radial gradient, resulting in the observed

steepening of the fluctuations in angle of arrival. However, we found

above that Po 6 and it is unlikely that even at solar maximum Po

could increase to such an extent as to cause the steepening in f< 5_8_> R
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and J< 6@6@ >R to be observed as far out as some 100 solar radii.

Finally, the observed steepening could be the result of the coronal

outflow becoming more confined to the solar polar regions during

solar maximum (see equations (4. 131) and (4. 139)), but this possi-

bility seems unlikely. In short, it appears that the observed steepening

of _< 6_6_ >R and J-< 6_6_ >R during solar maximum can be best ex-

plained by assuming that the corona tends to become more filamentary

during solar maximum, but further observations, particularly of the

type discussed in this chapter, will be necessary before any definite

conclusions may be drawn.

Finally, the available data for the fluctuations in angle of arrival

seem generally to indicate an (_) of about . 1 for the case where b = 200

kilometers (Hewish (1958), Slee (1959), H_Jgbom (1960), Erickson (1 964)).

This discrepancy may be due to a mean electron density less than that of

equation (4. 156), a correlation length greater than the 200 km. assumed,

< 5 2 /n 2
n >i < I, or to a spotty distribution of the regions of coronal tur-

bulence. Which of these alternatives is true can only be answered by

future observations of the type described.

At present no data exist for < 6tg--6tgrr >R' but there is some

data for <6f6f>R

(Goldstein (1967)).

5 Hz at 2295 MHz.

the data on fluctuations of angle of arrival,

b = 200 km this line broadening implies

_< _th 2>R = .05 sec.-1
R--=4

®

obtained from a solar occultation of Mariner IV

At R/R® = 4 the signal bandwidth increased by some

Now from Graph 5 , with c = . 1 to coincide with

it is readily seen that if

(4. 179)
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which we believe implies in turn that

V(r=4R )
o = .05 sec.

a(r=4R )
®

-I
(4.180)

If for V(r = 4 Ro) we take 100 km/sec (Parker (1 960b)) we find that

(4.180 ) implies

a(r=4R )
®

b (r : 4 R o)

= 10 (4. 181)

a not impossible result. We shall pursue this no further, detailed

Z

measurements being unavailable and the connection between < fph

and V being only postulated.

>

One final point will be made in connection with Graphs 3-i i.

Graphs , , appears = 2.0 we mayFrom 4, 7 and i0 it that at R/R °

expect

i / f ,2 _ -3
<

/< 6t 6t >R= I0 see
[ \TO-O/ gr gr ZR °

Let us see what this says about the general relativity experiment sug-

gested by Shapiro (1964, 1966). If we take

E = .I and f = 83 50 MHz we obtain

1.4 x i0 -8 sec.
J< 0tgrStgr >a= 2R®

-4
a figure well below the 1.6 x 10 sec. gravitational delay Shapiro

expects to measflre. However, (< 5tgr0tg r >R is not the quantity
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which we expect to observe. But from equation (4. 177) we see that at

8350 MHz and R/R® 2.0 we may expect/< 5tgr6tg r >R=2R to closely
o

represent the observed value, and we may therefore conclude that

statistical fluctuations due to coronal inhomogeneities should, at 8350

MHz, not affect Shapiro's experiment. The effects at lower frequencies

could, however, be appreciable.

Similarly, let us see to what extent fluctuations in the arrival

time of a signal pulse may be expected to affect the Sunblazer experi-

ment, where it is suggested that measurements of the relative delay

between pulse signals on carriers of different frequency can be used

to deduce the average coronal electron density (Harrington (1965)).

For the model corona specified by equation (2.58) the relative delay

due to the integrated electron density along the path may be shown for

carrier signals at 100 and 300 MHz to be (R/R e > 1.5)

(e) 027
,Xtl2 = ( 1.6 + . )seconds

(R/Ro)5 (R/R e )

Now from equation (4. 177) and the sample calculations of Graphs 4,

7, and 10 it is evident that/< 6tg6r tgr >o falls off with distance from

(e) and if we can show thatthe sun at least as rapidly a s At 12

/'< 6tg#tgr >o << Atl2 (e) at some value of R near to the sun (say gR®)

we can then conclude that this condition will be satisfied everywhere

and that the fluctuations should not affect the mean density determina-

tion. From equation (4. 177) and the calculations displayed on Graphs

3 and 4, 6 and 7, and 9 and 10 we see that for f = 100 MHz and R = 2R
®
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f< 8t 6t > : 2 x 10 -2 seconds (m:O)
gr gr o

where we have taken ( = . 1 to correspond to the data on fluctuations

(e) = 6.5 x I0 -2
in angle of arrival. But at R/R e = 2 we find At 12

seconds; we may thus with reasonable certainty conclude that fluctua-

tions in the time of arrival of signal pulses should not, for R/R e > 2,

fl I00 MHz, and f2 300 MHz, interfere with the measurement of

the relative delay between pulse signals on carriers of different

frequency.

We proceed now with further numerical examples, and examine

the case of anisotropic scattering with a preference for the radial direc-

tion, but with non-constant values of a/b. For this purpose we employ

the functions of equations (4. 161)-(4. 166) for a(r)/b(r). We plot on

Graphs 15-17 only < 6_6_ >R ' as we expect the other scattering param-

eters to be only slightly affected by the anisotropy. Perhaps of greater

use to us are Graphs 18-20 where is displayed, for a variety of func-

tional forms of (a/b), the expected anisotropy in angle of arrival (i.e.

¢r< 6_6_>R /¢c< 6_6_ >1% ); shown also for comparison are the values we

would expect if equation (4.98) were strictly true. It appears that for

most cases where equation (4.89) would be inappropriate use of equa-

tion (4.98) to estimate a(r)/b(r) should not result in errors greater than

some 25%; accuracy increases whenb(p) increases withp.

We proceed finally to examine numerically, on the basis of

equations (4. 145)-(4. 148), the effects, in the solar equatorial plane,

of curvature of the general solar magnetic field lines. The geometrical

behavior of the field lines in the equatorial plane may be specified by
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equation (4. 176) with f_= 14.38°/day and, typically, V = 300 km/sec.

For convenience we shall do the calculation only for a constant value of

(b) (this seems reasonable since the field line curvature becomes import-

ant at distances from the sun where Hewish and Dennison found a constant

correlation length; this may not be correct near solar maximum, how-

ever) and for a variety of constant values of a/b (this too is reasonable

since the available data indicate a constant value of a/b _ 2-4 beyond

some I0 solar radii (Erickson (1964))). We shall still consider the

source and observer to be I AU from the sun. Graphs 21-23 display,

for R/R@ > I0 (we do not expect to see significant effects of field curva-

ture within I0 solar radii), the scattering parameters for a variety of

(constant) values of a/b. We may conclude:

v) < 5_6_> R, < 6tgrStg r >R' and < 5fSf >R are not appreciably

affected by the field curvature.

vi) The effect of field line curvature on < 5@6_b >R is not

noticeable below about 100 solar radii, except perhaps for a slight

reduction in the steepness of its slope.

vii) Some effects of the field curvature may be seen beyond 100

solar radii, but these are probably too slight to be observable.

It appears, therefore, that we must conclude that for the coronal

models we find it reasonable to consider the effects of solar magnetic

field ,:urvature on radio scattering will probably not be observable.

This concludes the numerical examples. We have, for a number

of reasonable coronal models, successfully demonstrated the validity of

the assumptions which have formed the basis of the analytical discussions

of this chapter. We have also, within the limits of the present data,
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successfully correlated our results with the available observations of

scattering. We found the existing data to be consistent, beyond some

10 solar radii, with an mean electron density varying as 1/r 2 and a

generally constant transverse correlation length. We also found, how-

ever, that near solar maximum the transverse correlation length may

become more nearly proportional to distance from the sun, indicating

that the corona then becomes more filamentary in structure.
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Appendix I

In Chapter IV we stated, but did not prove, that under certain

weak restrictions the complete expressions, (3.102) and (3. 109) for

the scattering parameters 6¢(s) and 6tgr(S) reduce to the much simpler

expressions (4.28) and (4.29) when the coronal refractive index is suf-

ficiently constant to allow us to regard the basic rays about which occur

perturbations as nearly linear. We wish here to discuss this in more

detail.

We begin with equation (3. 102) for 6_(s):

6¢(s) = _ {"o (s) 6_(s)

S

;_s,+(_o__s,]_s} _._,
o -_FJ

We wish specifically to examine the terms which we have dropped in

Chapter IV, namely

S

(d"oh'
D_(s) = _Zo(S ) 6_(s) - f k--d-r-/ 6r(s') ds' (A. 2)

O

We start by evaluating 6x(s) under the conditions

linear rays,

(3.84),

S

6x(s) = ZCfo

of nearly

and nearly constant refractive index. We had, equation

S T

d'r°2' Tj
II 11

I I 1 ds' }'?ot_-I
(A. 3)
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Now we have shown that if the refractive index is sufficiently constant

that the basic rays are nearly linear, we may write (equation 3.96)

d(ro 2)

ds -- Z (s-s o)
(A. 4)

where s
o

6n(s) _ C

= r. cos ¢.. Inserting equation (A. 4) into (A. 3) yields
1 1

S S T 11

o /_O (S"-S o )_ ds" No'
1 ) 1 ds'

- --, o)2/Z0(s) _o (s'-s

(A. 5)

We must now decide what form to take for the refractive index,

/_o" Our restriction to nearly linear basic rays implies, via equation

(Z. 51 ),

Z
O3

P << 1
--2-
O.)

(A. 6)

From Graph 24 it is apparent that this is valid at 25 MHz beyond about

3 solar radii, while at 300 MHz it is valid beyond about i. 5 solar radii.

The smallness of _ 2/ 2 will lead us to consider only terms up to
P

first order in that quantity. The question is then what form to take

for u_ 2,_ n(r). For simplicity we shall confine our attention to the
P

coronal region beyond about 6 solar radii where, according to equation

(2.58) we may take

2 n(r) --_ 1 (A. 7)

r
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Thus we consider the average refractive index to be of the form

Z
_o = 1 - -'2" (A. 8)

r

<< 1
-2
r

If now we insert equation {A. 8} into equation {A. 5} for 6x{s},

and if we retain only terms to first order in _ Z/ 2 , we obtain
P

S S t

lot I(6X{s) _ -_ Is" (.06._ , i _ I ds'
-_o__J ds' _(s'l (s/ (_'-So__ (_.9_

0 0

Inverting the order of integration we obtain

S S

6×(s) -_ i _ I__ ds' (s" ds"

)Z "So)o " (s') r (s) Cs'-so

(A. lo)

Now consider the geometry appropriate to the present discus-

sion of nearly linear rays:

S=S

i )

Sun 1 source
(s=o)
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We may write then

roZ(S ') = roi(S) + (s-s')2 + 2ro(S)(S-S') cos (0o(S) +_i ) (A. Ii)

Inserting equation (A. 11) into (A. 10), and carrying out the integration

over (ds'), we obtain

S !

. )
- , sT'6-/ R 3 ' )i \ _-8_--/ ds'

O
0

(A. IZ)

where A'(s') is defined by the figure. This is our desired approximate

2/¢02 derived from
expression for 6_(s), valid to first order in O_p

(3. 102) under only the assumptions of equations (A. 4) and (A. 8). It is

thus appropriate for nearly linear rays greater than about 6 solar radii

distant from the solar center.

We proceed now to evaluate the remaining term in our expres-

sion (A. Z) for D_(s), namely

s (dbLoh ,
5 r(s') ds'k-d%-/

O

We begin by writing from equations (3.74) and (3.76)

d0 dr
o 5×(s)6r(s) : r ° .o 6_(s) + d--F

or

dO
o 8_(s)6 r(s) = r°

1 +

dr

o 6_(s)
ds

dO-

o 8_(s)
ro

(A. 13)
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It is useful to examine the second term in the square brackets of (A. 13).

For nearly linear basic rays this term becomes, using equations (3.98)

and (A. 12).

C dro

dr° 5x(s) 2 R_s
-d_ __ -So)

a_ d'O
0 0

ro --d_ 6_(s) ro _t_

S

(s,-So)(S-S°
_ {(s-s,)- R
O

A'(s') k a-_-] ds'

S
!

_ (s-s')\ 8-_-) ds'
O

where we have noted that for most rays of interest

1 1
>>

TZ sl
O

and that rio(S) _ 1. Now the two integrals in the expression above will

be of the same order of magnitude (they will be identical if the bulk of

the scattering occurs in the vicinity of s'=s o, as we expect to be the

case in virtue of the assumed 1/r z dependence of the electron density)

and we therefore have

dr
C o

dr _ r_-_--277'-so) "-d-so 5×(s)
-dT __

d0 c{O

o 5_(s) r oro --d_ o--d_

(A. 14)
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But by equation (2.13) we have for the present case of small refractive

effects

d@
-_ 2( OC=r ° s)

and (A. 14) becomes then

dr

o 6x(s) ro(S ) ( droh
d_ g R z -d_--] (A. 15)
o _¢(s) (S-So)ro

But from the geometry of page 175

dr o. s -s o

we see that

and (A. 15) becomes

dr

° 5×(s)

d_

o 6¢(s)
ro

= 1
<< 1 (A. 16)

 R--Z

the inequality following from equation (A. 8). Thus if (A. 16) is com-

bined with (A. 13) we obtain the convenient result

dO
-_ O

5r(s) - r° _ 6¢(s) (A. 17)

Inserting into (A. 17) equation (3.98), and letting Do _ 1, we obtain

d@ s

"_ro(S ) o _ (S-S')(_8-_) ds' (A. 18)5 rCs ) =
O
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From the geometry of page 175 it is easy to show that

d@
O = a

ro(S ) -d_
ro(S)

(A. 19)

and we obtain then

S

6r(s) = R (s-s') \ _--_---]
ro(S) o

ds' (A. 20 )

Now, to proceed with our consideration of the second term in

D_(s), we must still evaluate dido/dr. From equation (A. 8) we find

immediately

d_l o _
-d-F - -Y (A. Zl)

r

to first order in _¢ 2/ 2.
P

We may now evaluate the second term in D¢(s),

Using equations (A. 20) and (A. 21) we obtain

equation (A. 2).

S S S _ ,,

o o o r(s')
0

(A. 22)

Inverting the order of integration yields

S S S v,

--d-r/6r(s') ds' = gR (s'-s") 1 ds' ds"
0 0 " r -(s')

O

(A.23)
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If we write, from the geometry of page 175

to(S,) = / R 2 + (s,-So)z

and carry out the integration over (ds'), equation (A. 23) becomes

S

<%r°)'6 r(s') ds' _
O

s (s'

2 o R z r 2(s) S-So R 3 A,(s,)
O

ds v

(A. Z4)

This is our desired result, to first order in ¢0 2/aj2,-- derived under
P

only the assumptions of equations (A. 4) and (A. 8). It is thus appro-

priate for nearly linear rays lying beyond about 6 solar radii from the

solar center.

We are now in a position to evaluate Do(s), for if equations

(A. 12) and (A. Z4) are inserted into (A. 2) we obtain immediately

Do(s) : _(tto(S)C- R)

S !

ds' (A. 25)

But since our analysis is valid only to first order in _ 2,/0o2
P

we let

_o(S) = I in equation (A. Z5). Similarly, in virtue of equation (2.13)

and (A. 19) we obtain

/ _d6}0 -
C = ro2(S)_--_).. = R

S

(A. Z6)
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Thus to our delight equation (A. 25) becomes to first order in U_p2/U_ 2

D,I,(S): 0 (A. 27)

We have thus shown that equation (4.28) for 6¢(s) is valid subject to

only the following restrictions-

i) approximate linearity of the basic rays,

equation (A. 4)

ii) _o2 = 1- _ 2/oo2, with 03 2/ 2 << 1
P P

iii) n(r)_ I/r 2

Equation (A. 27) is of great importance for the reasons outlined in

Chapter IV.

We examine next the validity of equation (4.29) for 6tgr(S ).

correct expression, equation (3. 109), is

The

S

1 S6 (s)
6tgr(S) = - K- L_o---'_+ ,[

O

d_loh'
6tt(s') + ( --'d-T/ 6r(s')

ds' }
_oZ(S ')

(A. zs)

In obtaining equation (4.29) we have dropped the following terms:

s d_o_ , ds'

=6×(s)+_ (__] 6r(s')_o-_S,)Dt(s) _ o (A. 29)

From equations (A. 12) and (A. 24) we obtain, to first order in _ 2/2--
p
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s{( ) cs,-so,
Dt(s) _ R_ o R-21 _ r_l (s) s-sS-S'o - R 3 A'(s') 8-_--] ds'

O

(A. 3O)

Unlike the case of Do(s) the two terms in Dt(s) do not cancel, but

rather add. Thus a correction term must be added to equation (4. Z9)

for 6tgr(S), and we have then

S

1 _ 5_(s') ds' 1 Dt(s ) (A 31)
6tgr(S) = - -c o _to2(s') E

The correction term may be large in virtue of the derivative of 6_ in

Dr(S).

Let us examine the effects of the new term in some detail. We

begin by writing (A. 30) in the form

g(S_So) s 2(s)(s, (%_),Dt(s) = Z ; { (s-s') - r°R(s- -S°)A'} ds'
Rr (s) o So)

0

(A. 3Z)

where we have used

roZ(s) = R Z + (S-So)2 (.A. 33)

Inserting now (A. 32) into (A. 31) yields
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<6t 6t > = <6t 6t >
gr gr gr gr R

Za(S_So) s s

+ cZRr Z(s) o o I (s')< \8--'_--/ 6_(s")> ds'ds"
O

_Z(S_So)Z s s , ,,

+ ,.,_ _ J" J" _cs'_i_s"l< _-cJ _J
e (s) o o

o

ds'ds"

(A. 34)

where for convenience in writing we have let

Z

(s'-so) ro (s) _' }
I(s') = {(s-s') - R (s-s° )

(A. 35)

We recall that < 6tgr6tg r >R is that value of < 6tgr6tg r

in Chapter IV from the approximate expression (4.29).

> calculated

Now to evalu-

ate equation (A. 34) we need to know the forms taken by the correlations

within the integrands. II we assume an anisotropically turbulent

medium with < 6D(rt) 6_(r?) > specified by equation (4.70) {preference

for only the radial direction) we may readily obtain

!

< >=

- <6Z_ > sin ZY (_-b_)a

_ rZ (si_ + cosZ7)
a bZ---

r e (A. 36)

! !

\a-_, / > is given by equation (4.71); r = s"

(a) and (b) are the radial and transverse correlation lengths,

S' and

respec-

tively. These expressions are to be inserted into equation {A. 34) and
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the integrations over ds' and ds" carried out.

formation of variables allows us to write

S S S S-S t

  dsds d, s
O 0 O -S T

However a simple trans-

(A. 37)

If the correlation lengths are much less than (s) we may modify the

limits on the dr integration such that

S S S +co

O 0 O _¢o

(A. 38)

We note now a useful occurrence. If we insert equation (A. 36) into

(A. 34) and modify our variables of integration according to (A. 38),

and then perform the integration over (dr) the first integral will ren-

der zero, since (A. 36) is an odd function oft. (A. 34) becomes then

< 5tgr6tgr > = < 6tgr6tgr >R

eZ(S_So}Z s s
cZRZro4(S) o o

Now transform the variables (s') and (s") to (s') and (r = s"-s');

it is then an easy matter to show that as long as the correlation lengths

are small compared with R we may write equation (A. 39) as

< 6tgr6tgr > : < 6tgr6tgr >1%

_Z(s_so)Z s s , ,,

cZRZr 4(s) o o
O

(A. 40)
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If for the correlation we use equation (4.71), transform variables

according to (A. 38), and carry out the integration over (dr) we obtain

< 6tgrStgr > =< 6tgrbtgr >R

2/tt_ 2(S-So )2 s (s'-s o) r:(s) 2
+ .... _ {(s-s')- A'} < 62u> (I +A) 1/2

2R2 r 4 R (s b ( R2c (s) o -So) )
o I+A V_s, )

3/2 ds'

(A.41)

This expression is correct subject only to the restrictions that the cor-

relation lengths be much smaller than either (s) or (R); we expect these

conditions to be fully satisfied for the cases of interest.

Let us look at the integrand in CA. 41). For the spherically

symmetric situation we are considering we expect the terms outside

of the curly brackets to be even functions of (s'-So). If we now suppose

A, and (s-s') to vary slowly over the values of (s'-s o) for which signifi-

cant contributions to the integral exist, a not too restrictive condition

in virtue of the assumed 1/r 2 dependence of n(r) (implying a 1/r 4 de-

pendence of < 62 >}, we may then expand the curly brackets in the

integrand of (A. 41) and drop the term odd in (s'-s o ) to obtain

<6tgrStgr> : <6tgr6tgr>R

eZ(s_So)2 s 4(s )
2/_J" {(s-s') z+ r° (s'-s o)2 (A,)2}

+c2RZr 4(s) o R2(S-So )2
O

< 5% > (I + A) I/2

b
ds t

x

(A. 42)
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Now since we have already assumed that (s-s') and &(s') vary slowly

over the range of (s'-s o) for which significant contributions to the in-

)2tegral occur we must for consistency replace (s-s' and A(s') in (A. 42)

with their values at s' = s o, the point around which the contributions to

the integrals occur. Thus equation (A.42) becomes

<Stgr6tgr> = < 5tgrStgr>R

+

2 2

(s-s ° ) {
cZRZro4(S)

,2[< 5 5¢ >a (S-So 1 ro 4(s) -I S-So 2]
(S_So)4 (tan R )

(A. 43 )

2 s 21,L
+ ro4(S) -I S-So < 6 > (i + A) I/2 ds'}

Rg(S_So) z (tan _) 2/_ _o rOz(s') --15 (i + Ar--_s,)R2 )3/2

O

where we have noted that

2 _ R 2
(s'-So) = ro z(s') (A.44)

and have used equation (4.79) for < 6_5@ >R" Equation (A.43) is the

desired result expressing the important fact that even when the coronal

refractive index is very nearly uniform and the basic rays are very

nearly linear, the mean square of the fluctuations of times of arrival

of signal pulses can differ significantly from that which would be cal-

culated on the basis of a strictly uniform refractive index. To be useful,

however, equation (A. 43) should be cast in a form containing only

< 6_96_9 >R' an observable quantity. To that end we consider the ratio
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2_

S

r 2(s') <62_> (1 +A )1/2
O

b R 2 )3/2
o (I+A ro_S,)

s 2 1/2
2/_t '[o < 6 > (1 + A)R 2 3/2 ds '

b (1 + A C(s,) )

ds'

(A. 45)

If we assume that in both integrals of (A.45) the quantity A(R2/ro2(S'))

varies slowly over the range of (s') for which the bulk of the contribu-

tions to the integrals occur, we may then write this ratio as

S

ro2(S,) < 62a >b
O

ds I

s (A. 46)

[ <52_ >b ds'
O

We now note that for the present case of nlr) 1/r 2--_ we have < 5 >

1/r 4", we shall for convenience assume that the correlation length (b)

also exhibits a simple power law behavior: b--" r m. Then if we write

rdr
ds' =

v/r Z_ R g

and assume that we may extend the path of integration to + _ the ratio

(A. 46) becomes
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r(Z*rn)
rdr

_/r 2_ R 2

o_

R 1 rdr

(A. 47)

Evaluation of the integrals by use of Gamma functions gives the ratio

as

R 2 (m+2 '_
\ m------_l/ (A. 48)

Inspection of expressions (A. 45) and (A. 48) then allow us to write

s

2J-_' f roZ(s') < 52tt > (1 + A) 1/2
b R2

o (_+A r--_(s,)
0

ds' = R 2 (m+2 _ < 61_6_9_--+-rJ >R
)3/z

(A. 49)

where equation (4.79) has again been used for < 6_6_ >1%" Inserting

(A. 49) into equation (A. 43) gives

< 6tgrStgr > _'< 6tgrStgr >R

g2 s-s ° s-Sob2

+c-_ E( ro-_,; + 1 (tan-1 >c_ TJ 3 <6_6_ R

(A. 50)

Now from equations (A. 8) and (2.41) we note that

(A. 51)
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But it is easy to show that when n(r)_ 1/r 2

U_p ,4 = ,2

"-dT r= R/
{A. 52)

Combining equations (A. 51) and (A. 52) allows us to write (A. 50) in the

more meaningful form:

<StgrStgr> T<St 5t >Ro gr gr

c d]_o_2 f s-s ° .4+4 R4('-'dT-/r=R[kro _) +C_T ( tan-1
s-s° 7

(A. 53)

Equation (A. 53} is the result desired, relating the observable quanti-

ties < 5 tgr5 tg r >o and < 5}5_9 >R to the quantity < 5 tgr5 tg r >R utilized

extensively in the scattering discussion of Chapter IV. It is valid

subject only to the following restrictions:

i}

ii)

iii}

iv)

v)

vi}

vii)

viii)

approximate linearity of the basic rays (A. 4)

n{r) _-, I/r 2

only terms to first order in oo 2/oo2 have
P

been considered

a, b << s (see equation (4.44))

anisotropic turbulence with an autocorrelation

function specified by (4.70) (preference for only

the radial direction)

a, b<<R

(s-s'), Ais'), A(RZ/roZ(s ' )) vary slowly over

the range of (s'-s o) for which significant contribu-

tions to the scattering integrals occur

m
b---r
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Thus we have successfully determined the difference between the

values of< 5t 6t > which we would actually expect to observe, and
gr gr

those calculated on the basis of the approximate expression (4.29).

This difference can be considerable, and it might at first appear that

the discussion of Chapter IV based on equation (4.29) is invalid. How-

ever, if the average electron density is known equation (A. 53) may be

used to deduce < 6tgr6tg r >R from observed values of < 8¢5@ > and

< 6t 5t >, and that quantity may be then employed as discussed ex-
gr gr

tensively in Chapter IV. When the simplicity of equation (4.29) is

considered in relation to the complexity of the equations of this chapter,

the usefulness of equation (A. 53) becomes quite clear.

How large will the difference between < 6 tgr8 tg r >o and

< 6tgr6tgr >1% be? We shall write (A. 53) as

< 6tg6tgrr >o = < 6tgr6tgr >R (1 + G(R)) (A. 54)

where G(R) is defined by this expression and is

R 4 /' d _/'o'_2 /S-S O
G(R) = c-2" \-d-_]r= R E \ro-_ )4 1 (tan- 1 S-So _2+ (-_:Fi-1) -R--/ j

< >R

< 6tg#tgr >R

(A. 55)

Now we note that if the bulk of the scattering occurs in the vicinity of

s'=s equations (4.80) and (4.81b) allow us to write
O

< 8f_Sf_ >R -_ 2c 2

< 6tg#tgr >R bZ(r=R)

(A. 56)
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But as has been discussed in Chapter IV we may also write approxi-

mately

2

<6G6G>R = E a(r=R)_
< 6_b0_) >R b(r:R)

(A. 57)

Combining equations (A. 55)-(A. 57) yields

= 2R 4 dlao_2 (s-s ° 4
G(R) a-27r=R, (--d-_]r:R E \-_o(S,) + 1 (tan-1 S-So_2_,, 7 7 (A. 58)

Now if we take, according to equation (2.37),

106R Z
® -3

n(r) : Z cm
r

{A. 59)

equation (A. 58) becomes

1.6 x 10 3 s-s ° _4

G(R) / f .4, R.Z. a .2 [(ro--_/ +__ ( tan-1

®

(A. 60)

where here (f) is in megacycles and (a) is in kilometers. Equations

(A. 60) and (A. 54) allow a computational estimation of the difference

between the value of < 6 tgr5 tg r > actually expected and that found by

equation (4.29). For example, if we consider a frequency of 100 MHz

and a correlation length of 200 kilometers we find for a distant source

(tan -1 s-s° ~ )---]T- = Ir/2 that G(R) lies between 55.5 (m=0; or 35.7, m=l)

atR = 10 R and . 555 (m=0; or . 357, m=l)atR = 100 R . Thus it
® ®
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appears that the values observed for < 5tgrStg r > should at 100 MHz

be significantly higher than those calculated on the basis of equation

(4.29). However, (A. 60) indicates that if the frequency and/or the

correlation length is increased the correction factor [ 1 + G(R)] will

tend toward unity. For example, at 400 MHz G(R) varies between . 217

(m=0; or .14, m=l} at R = 10 R and .00217 (m=0; or .0014, re=l) at
®

R = 100R
®

Thus these results are important, and we must ask what happens

when n(r) does not vary as l/r2? This will be the case for rays passing

close to the sun, for from equation (2.58) we see that

1
n(r)_-_- ; 1.5<p< 6

r

1
n(r)_ --1--6 ; p < 1.5

r

(A. 61)

If we carry out an analysis similar to that presented here, but for

n(r) _-" 1/r n, we may obtain with some difficulty the following expres-

sion, which is to be compared with equation (A. 53)-

< 5tgrOtgr > = < 5tgrStgr >R

 Cn,)+m
+ _ R4 ( ---dT]r= R (-_) ((gn-1) 2g n 2(n_l)+m_l

C n

+ g: _2(n-1)+m (n-2)+rn )

(n-1)2(n-3) 2 ...(1) (m_) /Tth2
(n-2)2(n-4) 2 . .. (4)

\2/

(A. 62)
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where

n-1 n-2
gn = { (n___:.2_)+ (_1) (_3)+ . . . -'2-- terms } (A. 63)

The derivation of equation (A. 62) has required the following additional

as sump tions:

ix) n even

x) R<< ro(S)

Assumption (ix) would appear to be satisfied for a real case in virtue

of equation (2.58). Assumption (x) would also seem to be generally

valid since the exponent 'n' does not depart from (Z) until one is close

to the sun. It should be mentioned in addition, however, that for a

corona with a density distribution of the form of (2. 58) a ray which

passes sufficiently close to the sun to be in a region where n(r),-- 1/r 6,

say, will also be in the region where n(r)--, 1/r 2. Since (A. 62) has

been derived under the assumption that the ray lies wholly in a region

where n(r)--- 1/r n, its use bears the implicit restriction that

xi) that part of the ray for which the bulk of the scattering

occurs lies wholly in a region of 1/r n density dependence.

When conditions (i) - (xi) are satisfied we may use equations

(A. 62) and (A. 63) to find G(R) (equation (A. 54)) when n(r) --- 1/r n. For

example, it may be readily found that when n = 6_G(R) is roughly one

third of its value when n = 2.

In closing one final point must be made. The utility of equa-

tions (A. 53) (n(r)--"i/r 2) and (A. 62) (n(r)---I/r n) lies in their allowing

us to determine < 6tgrStg r >R' the quantity of most use to us as
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discussed in Chapter IV, from observations of < 5tgrStg r > and

< 5q_5_b >. The only problem is that this determination necessitates

knowledge of (m) (b(r)--_ rm), whereas the determination of b(r)

necessitates, as has been discussed in Chapter IV, knowledge of

< 5tgrStgr >R " In practice, then, one would assume a value for (m)

with which < 5tgrStg r >R would be found via equation (A, 53) or (A. 62),

and the behavior of < 5tgrStg r >R so determined would then enable us

to check for consistency; if a discrepancy were found a new value for

(m) would be chosen. This problem would, of course, be eliminated

if (R) and/or (f) were such that G(R) << 1.
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Graphs 1 and 2

Graph 1 :

Graph 2:

Absorption as a function of ray offset

angle at various frequencies.

Absorption as a function of frequency

at various ray offset angles.
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Graphs 3, 4, 5

Graph 3: The in-plane and out-of-plane scattering

angles vs. path offset distance for

constant anisotropy ratios and a trans-

verse correlation length of 200 km.

Graph 4 : The fluctuations in pulse signal propa-

gation times vs. path offset distance

for constant anisotropy ratios and a

transverse correlation length of 200 km.

Graph 5 : The line broadening vs. path offset dis-

tance for constant anisotropy ratios and

a transverse correlation length of 200 km.
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Graphs 6, 7, 8

Graph 6 :

Graph 7:

Graph 8 :

The in-plane and out-of-plane scattering
angles vs. path offset distance for con-

stant anisotropy ratios and a transverse

correlation distance b(p) = .3004/3 km.

The fluctuations in pulse signal propa-

gation times vs. path offset distance

for constant anisotropy ratios and a

transverse correlation distance b(p) = .30p4/3km.

The line broadening vs. path offset distance

for constant anisotropy ratios and a trans-

verse correlation distance b(p) = .30p4/3 km.
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Graphs 9, I0, ii

Graph 9 : The in-plane and out-of-plane scattering

angles vs. path offset distance for

constant anisotropy ratios and a transverse

correlation distance b(p) = 30p km.

Graph i0 : The fluctuations in pulse signal propa-

gation times vs. path offset distance for

constant anisotropy ratios and a trans-

verse correlation distance b(p) = 30p km.

Graph ll : The line broadening vs. path offset distance

for constant anisotropy ratios and a trans-

verse correlation length b(p) = 30p km.
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Graphs 12, 13, 14

The scattering asymmetry (the ratio of the out-of-

plane r.m.s, scattering angle to the in-plane r.m.s.

scattering angle) vs. path offset distance for con-

stant anisotropy ratios. The solid lines represent

the numerically calculated values while the dashed

lines are those values which would be observed were

(4.98) strictly true.

Graph 12:

Graph 13:

Graph 14:

Transverse correlation length = constant

4/3Transverse correlation length _ p

Transverse correlation length _ p
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Graphs 15, 16, 17

The in-plane scattering angle vs. path offset

distance for various functional forms of the

anisotropy ratio a/b.

Curve 1 :

2:

3:

4:

6:

7:

Graph 15 :

Graph 16 :

Graph 17 :

a/b = 1

a/b = .l(p - i) + 1

a/b = p

a/b = 10(p - i) + 1

a/b = 1 + i0/_

a/b = 1 + 100/p

Transverse correlation length = 200 km

Transverse correlation length = .30p 4/3 km

Transverse correlation length = 30p km
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Graphs 18, 19, 20

The scattering asymmetry (the ratio of the out-of-

plane r.m.s, scattering angle to the in-plane r.m.s.

scattering angle) vs. path offset distance for various

functional forms of the anisotropy ratio a/b. The

solid lines represent the numerically calculated values

while the dashed lines are those values which would be

observed were (4.98) strictly true.

Curve 2:

3:

4:

5:

6:

7:

Graph 18:

Graph 19:

Graph 20:

a/b = .l(p - i) + 1

a/b = p

a/b = 10(p - i) + 1

a/b = 1 + i/p

a/b = 1 + 10/p

a/b = 1 + 100/p

Transverse correlation length = constant

Transverse correlation length _ p4/3

Transverse correlation length _ p
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Graphs 21, 22, 23

The scattering parameters for the case of a curved

general solar magnetic field in the solar equatorial

plane. The angle between the magnetic field and the

radial direction is

= tan- 1 r__
V

where (_) is the solar rotation rate (14.38°/day)

and (V) is the (constant) solar wind velocity

(300 km/sec). The transverse correlation length

is 200 km.

Graph 21:

Graph 22:

Graph 23:

The in-plane and out-of-plane scattering

angles vs. path offset distance for con-

stant anisotropy ratios.

The fluctuations in pulse signal propa-

gation times vs. path offset distance

for constant anisotropy ratios.

The line broadening vs. path offset

distance for constant anisotropy ratios.
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Graph 24

The average refractive index as a function of dis-

tance from the solar center for various frequencies.
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