53 research outputs found
Particle characterization using THz spectroscopy
THz extinction spectroscopy extends UV-Vis and NIR-spectroscopy to
characterize particles from fine powders and dust to sand, grains and
granulated materials. We extract particle sizes from the spectral position of
the first peak of the interference structure and size distributions from the
visibility of the fine ripple structure in the measured extinction spectra. As
such, we can demonstrate a route for a quick determination of these parameters
from single measurements.Comment: 6 pages, 6 figure
THz Electron Paramagnetic Resonance / THz Spectroscopy at BESSY II
The THz beamline at BESSY II employs high power broadband femto- to picosecond long THz pulses for magneto-optical THz and FIR studies. A newly designed set-up exploits the unique properties of ultrashort THz pulses generated by laser-energy modulation of electron bunches in the storage ring or alternatively from compressed electron bunches. Experiments from 0.15 to 5 THz (~ 5 – 150 cm-1) may be conducted at a user station equipped with a fully evacuated high resolution FTIR spectrometer (0.0063 cm-1), lHe cooled bolometer detectors, a THz TDS set-up and different sample environments, including a superconducting high field magnet (+11 T - 11T) with variable temperature insert (1.5 K – 300 K), a sample cryostat and a THz attenuated total reflection chamber.  Main applications are Frequency Domain Fourier transform THz-Electron Paramagnetic Resonance (FD-FT THz-EPR), THz-FTIR spectroscopy and optical pump - THz probe time domain spectroscopy (TDS), with sub-ps time resolution
The FemtoSpeX facility at BESSY II
The FemtoSpeX facility of the BESSY II storage ring is dedicated to ultrafast optical-pump & soft  x-ray probe experiments. Experimental end-stations for experiments in transmission, reflection, and diffraction geometry are available
a FD-FT THz-EPR study
A combined X-band and frequency-domain Fourier-transform THz electron
paramagnetic resonance (FD-FT THz-EPR) approach has been employed to determine
heme Fe(III) S = 5/2 zero-field splitting (ZFS) parameters of frozen metHb and
metMb solutions, both with fluoro and aquo ligands. Frequency-domain EPR
measurements have been carried out by an improved synchrotron-based FD-FT THz-
EPR spectrometer. ZFS has been determined by field dependence of spin
transitions within the mS = ±1/2 manifold, for all four protein systems, and
by zero-field spin transitions between mS = ±1/2 and mS = ±3/2 levels, for
metHb and metMb flouro-states. FD-FT THz-EPR data were simulated with a novel
numerical routine based on Easyspin, which allows now for direct comparison of
EPR spectra in field and frequency domain. We found purely axial ZFSs of D =
5.0(1) cm−1 (flouro-metMb), D = 9.2(4) cm−1 (aquo-metMb), D = 5.1(1) cm−1
(flouro-metHB) and D = 10.4(2) cm−1 (aquo-metHb)
Far- and mid-infrared emission and reflectivity of orthorhombic and cubic ErMn O 3: Polarons and bipolarons
We report on the high-temperature evolution of far- and mid-infrared reflectivity and emissivity spectra of ambient orthorhombic ErMnO3 from 12 K to sample decomposition above 1800 K. At low temperatures the number of phonons agrees with the predictions for orthorhombic space group D2h16-Pbnm (Z=4) and coexists with a paramagnon spin resonance and rare-earth crystal-field transitions. Increasing the temperature, a number of vibrational bands undergo profile broadening and softening approaching the orbital disordered phase where the orthorhombic Ó lower-temperature cooperative phase coexists with cubic-orthorhombic O. O-ErMnO3 undergoes a first-order order-disorder transition into the perovskite cubic phase at Tcubic∼1329K±20K where the three triple degenerate phonons allowed by the space group Pm-3m (Z=1) are identified. At about 800 K, a quantitative small polaron analysis of the orthorhombic midinfrared real part optical conductivity shows that antisymmetric and symmetric breathing modes sustain the strongest electron-phonon interactions. Above Tcubic the bipolaron fingerprint profile is the midinfrared dominant and only feature. Its appearance correlates with the localized screening of the highest vibrational mode reststrahlen band. We propose that the longitudinal optical mode macroscopic field screening is a consequence of dynamically sharing δ disproportioned eg electrons hovering over the Jahn-Teller distorted octahedral dimer {Mn(QJT)3+δ[Mn(QJT)[3]-δ]O6/2}2. A thermal driven insulator-metal transition is detected with onset ∼1600 K. We also address the occurrence of an inhomogeneity induced terahertz band result of heating the samples in dry air, triggering Mn3+-Mn4+ double exchange, under the presence of Mn4+ smaller ions stabilizing the orthorhombic lattice.Centro de QuÃmica Inorgánic
Analysis of Granular Packing Structure by Scattering of THz Radiation
Scattering methods are widespread used to characterize the structure and
constituents of matter on small length scales. This motivates this introductory
text on identifying prospective approaches to scattering-based methods for
granular media. A survey to light scattering by particles and particle
ensembles is given. It is elaborated why the established scattering methods
using X-rays and visible light cannot in general be transferred to granular
media. Spectroscopic measurements using Terahertz radiation are highlighted as
they to probe the scattering properties of granular media, which are sensitive
to the packing structure. Experimental details to optimize spectrometer for
measurements on granular media are discussed. We perform transmission
measurements on static and agitated granular media using Fourier-transform
spectroscopy at the THz beamline of the BessyII storage ring. The measurements
demonstrate the potential to evaluate degrees of order in the media and to
track transient structural states in agitated bulk granular media.Comment: 12 Pages, 9 Figures, 56 Reference
Easy-plane to easy-axis anisotropy switching in a Co(ii) single-ion magnet triggered by the diamagnetic lattice
Single ion magnets SIMs with large magnetic anisotropy are promising candidates for realization of single molecule based magnetic memory and qubits. Creation of materials with magnetically uncoupled spatially separated SIMs requires dilution in a diamagnetic matrix. Herein, we report that progressive dilution of paramagnetic Co II by diamagnetic Zn II in the SIM [CoxZn 1 amp; 8722;x piv 2 2 NH2 Py 2], x 1 0 beyond a threshold of 50 reveals an abrupt structural change, where the distorted tetrahedral Zn coordination structure is superimposed on the remaining Co ions, which were initially in a distorted octahedral environment. Dilution induced structure modification switches the magnetic anisotropy from easy plane D 36.7 cm amp; 8722;1 to easy axis type D amp; 8722;23.9 cm amp; 8722;1 , accompanied by a fivefold increase of the magnetic relaxation time at 2 K. Changes of the static and dynamic magnetic properties are monitored by electron paramagnetic resonance spectroscopy and AC susceptibility measurements. Complementary quantum chemical ab initio calculations quantify the influence of structural changes on the electronic structure and the magnetic anisotropy. Thus, magnetic dilution hits two goals at once, the creation of isolated magnetic centres and an improvement of their SIM propertie
Homoleptic Fe(III) and Fe(IV) Complexes of a Dianionic C3-Symmetric Scorpionate
High-valent iron species have been implicated as key intermediates in catalytic oxidation reactions, both in biological and synthetic systems. Many heteroleptic Fe(IV) complexes have now been prepared and characterized, especially using strongly π-donating oxo, imido, or nitrido ligands. On the other hand, homoleptic examples are scarce. Herein, we investigate the redox chemistry of iron complexes of the dianonic tris-skatylmethylphosphonium (TSMP2-) scorpionate ligand. One-electron oxidation of the tetrahedral, bis-ligated [(TSMP)2FeII]2- leads to the octahedral [(TSMP)2FeIII]−. The latter undergoes thermal spin-cross-over both in the solid state and solution, which we characterize using superconducting quantum inference device (SQUID), Evans method, and paramagnetic nuclear magnetic resonance spectroscopy. Furthermore, [(TSMP)2FeIII]− can be reversibly oxidized to the stable high-valent [(TSMP)2FeIV]0 complex. We use a variety of electrochemical, spectroscopic, and computational techniques as well as SQUID magnetometry to establish a triplet (S = 1) ground state with a metal-centered oxidation and little spin delocalization on the ligand. The complex also has a fairly isotropic g-tensor (giso = 1.97) combined with a positive zero-field splitting (ZFS) parameter D (+19.1 cm-1) and very low rhombicity, in agreement with quantum chemical calculations. This thorough spectroscopic characterization contributes to a general understanding of octahedral Fe(IV) complexes
a versatile optical pump–soft X-ray probe facility with 100 fs X-ray pulses of variable polarization
Here the major upgrades of the femtoslicing facility at BESSY II (Khan et al.,
2006) are reviewed, giving a tutorial on how elliptical-polarized ultrashort
soft X-ray pulses from electron storage rings are generated at high repetition
rates. Employing a 6 kHz femtosecond-laser system consisting of two amplifiers
that are seeded by one Ti:Sa oscillator, the total average flux of photons of
100 fs duration (FWHM) has been increased by a factor of 120 to up to 106
photons s-1 (0.1% bandwidth)-1 on the sample in the range from 250 to 1400 eV.
Thanks to a new beamline design, a factor of 20 enhanced flux and improvements
of the stability together with the top-up mode of the accelerator have been
achieved. The previously unavoidable problem of increased picosecond-
background at higher repetition rates, caused by `halo' photons, has also been
solved by hopping between different `camshaft' bunches in a dedicated fill
pattern (`3+1 camshaft fill') of the storage ring. In addition to an increased
X-ray performance at variable (linear and elliptical) polarization, the sample
excitation in pump-probe experiments has been considerably extended using an
optical parametric amplifier that supports the range from the near-UV to the
far-IR regime. Dedicated endstations covering ultrafast magnetism experiments
based on time-resolved X-ray circular dichroism have been either upgraded or,
in the case of time-resolved resonant soft X-ray diffraction and reflection,
newly constructed and adapted to femtoslicing requirements. Experiments at low
temperatures down to 6 K and magnetic fields up to 0.5 T are supported. The
FemtoSpeX facility is now operated as a 24 h user facility enabling a new
class of experiments in ultrafast magnetism and in the field of transient
phenomena and phase transitions in solids
- …