251 research outputs found

    Compton Scattering In Electron Energy Loss Spectrometry

    Get PDF
    It is well known that the distribution of electron momenta (electron density in momentum representation) of gases can be probed by Compton scattering of either photons (γ-rays or X-rays) or electrons. Recently it has been shown that Compton scattering of electrons is suited to the study of the electron momentum densities of solids on a microscopic scale. This technique, known as ECOSS, Electron Compton Scattering from Solids can be done in the electron microscope by electron energy loss spectrometry (EELS). After a discussion of inherent approximations and the introduction of the reciprocal form factor a method is proposed in order to cope with the main difficulty, namely multiple scattering. Important applications of ECOSS are the study of anisotropy of momentum densities; correlation effects of conduction electrons in metals; and charge transfer in alloys

    Infrared stability of ABJ-like theories

    Full text link
    We consider marginal deformations of the superconformal ABJM/ABJ models which preserve N=2 supersymmetry. We determine perturbatively the spectrum of fixed points and study their infrared stability. We find a closed line of fixed points which is IR stable. The fixed point corresponding to the ABJM/ABJ models is stable under marginal deformations which respect the original SU(2)xSU(2) invariance, while deformations which break this group destabilize the theory which then flows to a less symmetric fixed point. We discuss the addition of flavor degrees of freedom. We prove that in general a flavor marginal superpotential does not destabilize the system in the IR. An exception is represented by a marginal coupling which mixes matter charged under different gauge sectors. Finally, we consider the case of relevant deformations which should drive the system to a strongly coupled IR fixed point recently investigated in arXiv:0909.2036 [hep-th].Comment: 1+11 pages, 4 figures; v2: minor correction

    Early development and tuning of a global coupled cloud resolving model, and its fast response to increasing CO2

    Get PDF
    Since the dawn of functioning numerical dynamical atmosphere- and ocean models, their resolution has steadily increased, fed by an exponential growth in computational capabilities. However, because resolution of models is at all times limited by computational power a number of mostly small-scale or micro-scale processes have to be parameterised. Particularly those of atmospheric moist convection and ocean eddies are problematic when scientists seek to interpret output from model experiments. Here we present the first coupled ocean-atmosphere model experiments with sufficient resolution to dispose of moist convection and ocean eddy parameterisations. We describe the early development and discuss the challenges associated with conducting the simulations with a focus on tuning the global mean radiation balance in order to limit drifts. A four-month experiment with quadrupled CO2 is then compared with a ten-member ensemble of low-resolution simulations using MPI-ESM1.2-LR. We find broad similarities of the response, albeit with a more diversified spatial pattern with both stronger and weaker regional warming, as well as a sharpening of precipitation in the inter tropical convergence zone. These early results demonstrate that it is already now possible to learn from such coupled model experiments, even if short by nature

    Manifestly Supersymmetric RG Flows

    Full text link
    Renormalisation group (RG) equations in two-dimensional N=1 supersymmetric field theories with boundary are studied. It is explained how a manifestly N=1 supersymmetric scheme can be chosen, and within this scheme the RG equations are determined to next-to-leading order. We also use these results to revisit the question of how brane obstructions and lines of marginal stability appear from a world-sheet perspective.Comment: 22 pages; references added, minor change

    The Conformal Manifold of Chern-Simons Matter Theories

    Full text link
    We determine perturbatively the conformal manifold of N=2 Chern-Simons matter theories with the aim of checking in the three dimensional case the general prescription based on global symmetry breaking, recently introduced. We discuss in details few remarkable cases like the N=6 ABJM theory and its less supersymmetric generalizations with/without flavors. In all cases we find perfect agreement with the predictions of global symmetry breaking prescription.Comment: 1+17 pages, 1 figure, references adde

    Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force

    Full text link
    We discuss the ergodic properties of quasi-Markovian stochastic differential equations, providing general conditions that ensure existence and uniqueness of a smooth invariant distribution and exponential convergence of the evolution operator in suitably weighted LL^{\infty} spaces, which implies the validity of central limit theorem for the respective solution processes. The main new result is an ergodicity condition for the generalized Langevin equation with configuration-dependent noise and (non-)conservative force

    ABJM theory as a Fermi gas

    Full text link
    The partition function on the three-sphere of many supersymmetric Chern-Simons-matter theories reduces, by localization, to a matrix model. We develop a new method to study these models in the M-theory limit, but at all orders in the 1/N expansion. The method is based on reformulating the matrix model as the partition function of an ideal Fermi gas with a non-trivial, one-particle quantum Hamiltonian. This new approach leads to a completely elementary derivation of the N^{3/2} behavior for ABJM theory and N=3 quiver Chern-Simons-matter theories. In addition, the full series of 1/N corrections to the original matrix integral can be simply determined by a next-to-leading calculation in the WKB or semiclassical expansion of the quantum gas, and we show that, for several quiver Chern-Simons-matter theories, it is given by an Airy function. This generalizes a recent result of Fuji, Hirano and Moriyama for ABJM theory. It turns out that the semiclassical expansion of the Fermi gas corresponds to a strong coupling expansion in type IIA theory, and it is dual to the genus expansion. This allows us to calculate explicitly non-perturbative effects due to D2-brane instantons in the AdS background.Comment: 52 pages, 11 figures. v3: references, corrections and clarifications added, plus a footnote on the relation to the recent work by Hanada et a
    corecore