305 research outputs found
Breeding den selection by Arctic foxes (Vulpes lagopus) in southern Yamal Peninsula, Russia
Selecting the right location for a den during the breeding season is a type of habitat selection in the Arctic fox (Vulpes lagopus) that is likely to affect its reproductive success. A den’s suitability likely depends on its ability to provide shelter, as well as its proximity to prey resources. Depending on the different relative risks that Arctic foxes may face across their broad circumpolar range, Arctic foxes may place different emphases on selection for shelter and prey resources in different ecosystems. Understanding the different requirements for reproduction under different ecological conditions is highly relevant to conservation efforts in areas where Arctic foxes are threatened by rapid environmental changes. Here, we investigated the relative selection for shelter and prey resources in southern Yamal Peninsula (Russia) using data from 45 dens collected over a 13-year period. Arctic foxes preferred to breed in dens with more den entrances; an indicator of shelter quality. Arctic foxes also preferred dens surrounded by more prey resources (quantified by the amount of river valley habitat), but this result was less conclusive. These results complement the findings reported from other study areas, illustrating that Arctic foxes in ecosystems with diverse predator communities may put emphasis on selection for shelter quality. In less productive ecosystems, Arctic foxes may rather put emphasis on selection for prey resources. As tundra ecosystems become more productive and generalist predators move north, the reproductive requirements and habitat selection of Arctic foxes may change accordingly, depending on the species’ ability to adapt
A Recently Formed Triploid Cardamine insueta Inherits Leaf Vivipary and Submergence Tolerance Traits of Parents
Contemporary speciation provides a unique opportunity to directly observe the traits and environmental responses of a new species. Cardamine insueta is an allotriploid species that appeared within the past 150 years in a Swiss village, Urnerboden. In contrast to its two progenitor species, Cardamine amara and Cardamine rivularis that live in wet and open habitats, respectively, C. insueta is found in-between their habitats with temporal water level fluctuation. This triploid species propagates clonally and serves as a triploid bridge to form higher ploidy species. Although niche separation is observed in field studies, the mechanisms underlying the environmental robustness of C. insueta are not clear. To characterize responses to a fluctuating environment, we performed a time-course analysis of homeolog gene expression in C. insueta in response to submergence treatment. For this purpose, the two parental (C. amara and C. rivularis) genome sequences were assembled with a reference-guided approach, and homeolog-specific gene expression was quantified using HomeoRoq software. We found that C. insueta and C. rivularis initiated vegetative propagation by forming ectopic meristems on leaves, while C. amara did not. We examined homeolog-specific gene expression of three species at nine time points during the treatment. The genome-wide expression ratio of homeolog pairs was 2:1 over the time-course, consistent with the ploidy number. By searching the genes with high coefficient of variation of expression over time-course transcriptome data, we found many known key transcriptional factors related to meristem development and formation upregulated in both C. rivularis and rivularis-homeolog of C. insueta, but not in C. amara. Moreover, some amara-homeologs of these genes were also upregulated in the triploid, suggesting trans-regulation. In turn, Gene Ontology analysis suggested that the expression pattern of submergence tolerant genes in the triploid was inherited from C. amara. These results suggest that the triploid C. insueta combined advantageous patterns of parental transcriptomes to contribute to its establishment in a new niche along a water-usage gradient
De ontwikkeling van de beeldvorming rondom culturele diversiteit bij de Rijksoverheid in de periode 2008-2018.
De manier waarop medewerkers van de Rijksoverheid tegen culturele diversiteit aankijken, speelt een belangrijke rol in het succes van diversiteitsbeleid. In 2008 werd deze beeldvorming al eens Rijksbreed in kaart gebracht. Het hoofddoel van het huidige onderzoek was om te zien in hoeverre de beeldvorming zich in de afgelopen tien jaar heeft ontwikkeld. Daarnaast werd onderzocht of het organisatieklimaat en de leiderschapsstijl van de leidinggevende een rol spelen in de ontwikkeling van de beeldvorming.
Het onderzoek werd uitgevoerd d.m.v. een digitale vragenlijst. Respondenten werd gevraagd welke voor- en nadelen van diversiteit zij ervaren op de werkvloer. Er werd een vergelijking gemaakt tussen twee willekeurige steekproeven onder Rijksambtenaren in 2008 (1617 respondenten in 7 kerndepartementen) en 2018 (2024 respondenten in 10 kerndepartementen en 4 uitvoeringsorganisaties).
De resultaten laten zien dat Rijksambtenaren in 2018 positiever aankijken tegen culturele diversiteit op de werkvloer dan in 2008. Met name de voordelen voor productiviteit (de business case) worden meer erkend dan voorheen. Werknemers van de Rijksover
Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases
Exploding seed pods evolved in the Arabidopsis relative Cardamine hirsuta via morphomechanical innovations that allow the storage and rapid release of elastic energy. Asymmetric lignin deposition within endocarpb cell walls is one such innovation that is required for explosive seed dispersal and evolved in association with the trait. However, the genetic control of this novel lignin pattern is unknown. Here, we identify three lignin-polymerizing laccases, LAC4, 11, and 17, that precisely colocalize with, and are redundantly required for, asymmetric lignification of endocarpb cells. By screening for C. hirsuta mutants with less lignified fruit valves, we found that loss of function of the transcription factor gene SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 7 (SPL7) caused a reduction in endocarpb cell-wall lignification and a consequent reduction in seed dispersal range. SPL7 is a conserved regulator of copper homeostasis and is both necessary and sufficient for copper to accumulate in the fruit. Laccases are copper-requiring enzymes. We discovered that laccase activity in endocarpb cell walls depends on the SPL7 pathway to acclimate to copper deficiency and provide sufficient copper for lignin polymerization. Hence, SPL7 links mineral nutrition to efficient dispersal of the next generation
Root System Architecture from Coupling Cell Shape to Auxin Transport
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport
- …