1,987 research outputs found
Cortical and spinal mechanisms of task failure of sustained submaximal fatiguing contractions
In this and the subsequent companion paper, results are presented that collectively seek to delineate the contribution that supraspinal circuits have in determining the time to task failure (TTF) of sustained submaximal contractions. The purpose of this study was to compare adjustments in supraspinal and spinal excitability taken concurrently throughout the performance of two different fatigue tasks with identical mechanical demands but different TTF (i.e., force-matching and position-matching tasks). On separate visits, ten healthy volunteers performed the force-matching or position-matching task at 15% of maximum strength with the elbow flexors to task failure. Single-pulse transcranial magnetic stimulation (TMS), paired-pulse TMS, paired cortico-cervicomedullary stimulation, and brachial plexus electrical stimulation were delivered in a 6-stimuli sequence at baseline and every 2–3 minutes throughout fatigue-task performance. Contrary to expectations, the force-matching task TTF was 42% shorter (17.5±7.9 min) than the position-matching task (26.9±15.11 min; p0.05). Therefore, failure occurred after a similar mean decline in motorneuron excitability developed (p0.10) and an index of upstream excitation of the motor cortex remained constant (p>0.40). Together, these results suggest that as fatigue develops prior to task failure, the increase in corticospinal excitability observed in relationship to the decrease in spinal excitability results from a combination of decreasing intracortical inhibition with constant levels of intracortical facilitation and upstream excitability that together eventually fail to provide the input to the motor cortex necessary for descending drive to overcome the spinal cord resistance, thereby contributing to task failure
Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction.
The purpose of this study was to determine whether anodal transcranial direct current stimulation (tDCS) delivered while performing a sustained submaximal contraction would increase time to task failure (TTF) compared to sham stimulation. Healthy volunteers (n = 18) performed two fatiguing contractions at 20% of maximum strength with the elbow flexors on separate occasions. During fatigue task performance, either anodal or sham stimulation was delivered to the motor cortex for up to 20 minutes. Transcranial magnetic stimulation (TMS) was used to assess changes in cortical excitability during stimulation. There was no systematic effect of the anodal tDCS stimulation on TTF for the entire subject set (n = 18; p = 0.64). Accordingly, a posteriori subjects were divided into two tDCS-time groups: Full-Time (n = 8), where TTF occurred prior to the termination of tDCS, and Part-Time (n = 10), where TTF extended after tDCS terminated. The TTF for the Full-Time group was 31% longer with anodal tDCS compared to sham (p = 0.04), whereas TTF for the Part-Time group did not differ (p = 0.81). Therefore, the remainder of our analysis addressed the Full-Time group. With anodal tDCS, the amount of muscle fatigue was 6% greater at task failure (p = 0.05) and the amount of time the Full-Time group performed the task at an RPE between 8–10 (“very hard”) increased by 38% (p = 0.04) compared to sham. There was no difference in measures of cortical excitability between stimulation conditions (p = 0.90). That the targeted delivery of anodal tDCS during task performance both increased TTF and the amount of muscle fatigue in a subset of subjects suggests that augmenting cortical excitability with tDCS enhanced descending drive to the spinal motorpool to recruit more motor units. The results also suggest that the application of tDCS during performance of fatiguing activity has the potential to bolster the capacity to exercise under conditions required to derive benefits due to overload
Recommended from our members
Palbociclib has no clinically relevant effect on the QTc interval in patients with advanced breast cancer.
The aim of this study was to assess the potential effects of palbociclib in combination with letrozole on QTc. PALOMA-2, a phase 3, randomized, double-blind, placebo-controlled trial, compared palbociclib plus letrozole with placebo plus letrozole in postmenopausal women with estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer. The study included a QTc evaluation substudy carried out as a definitive QT interval prolongation assessment for palbociclib. Time-matched triplicate ECGs were performed at 0, 2, 4, 6, and 8 h at baseline (Day 0) and on Cycle 1 Day 14. Additional ECGs were collected from all patients for safety monitoring. The QT interval was corrected for heart rate using Fridericia's correction (QTcF), Bazett's correction (QTcB), and a study-specific correction factor (QTcS). In total, 666 patients were randomized 2 : 1 to palbociclib plus letrozole or placebo plus letrozole. Of these, 125 patients were enrolled in the QTc evaluation substudy. No patients in the palbociclib plus letrozole arm of the substudy (N=77) had a maximum postbaseline QTcS or QTcF value of ≥ 480 ms, or a maximum increase from clock time-matched baseline for QTcS or QTcF values of ≥ 60 ms. The upper bounds of the one-sided 95% confidence interval for the mean change from time-matched baseline for QTcS, QTcF, and QTcB at all time points and at steady-state Cmax following repeated administration of 125 mg palbociclib were less than 10 ms. Palbociclib, when administered with letrozole at the recommended therapeutic dosing regimen, did not prolong the QT interval to a clinically relevant extent
Racial and ethnic disparities in the control of cardiovascular disease risk factors in Southwest American veterans with type 2 diabetes: the Diabetes Outcomes in Veterans Study
BACKGROUND: Racial/ethnic disparities in cardiovascular disease complications have been observed in diabetic patients. We examined the association between race/ethnicity and cardiovascular disease risk factor control in a large cohort of insulin-treated veterans with type 2 diabetes. METHODS: We conducted a cross-sectional observational study at 3 Veterans Affairs Medical Centers in the American Southwest. Using electronic pharmacy databases, we randomly selected 338 veterans with insulin-treated type 2 diabetes. We collected medical record and patient survey data on diabetes control and management, cardiovascular disease risk factors, comorbidity, demographics, socioeconomic factors, psychological status, and health behaviors. We used analysis of variance and multivariate linear regression to determine the effect of race/ethnicity on glycemic control, insulin treatment intensity, lipid levels, and blood pressure control. RESULTS: The study cohort was comprised of 72 (21.3%) Hispanic subjects (H), 35 (10.4%) African Americans (AA), and 226 (67%) non-Hispanic whites (NHW). The mean (SD) hemoglobin A1c differed significantly by race/ethnicity: NHW 7.86 (1.4)%, H 8.16 (1.6)%, AA 8.84 (2.9)%, p = 0.05. The multivariate-adjusted A1c was significantly higher for AA (+0.93%, p = 0.002) compared to NHW. Insulin doses (unit/day) also differed significantly: NHW 70.6 (48.8), H 58.4 (32.6), and AA 53.1 (36.2), p < 0.01. Multivariate-adjusted insulin doses were significantly lower for AA (-17.8 units/day, p = 0.01) and H (-10.5 units/day, p = 0.04) compared to NHW. Decrements in insulin doses were even greater among minority patients with poorly controlled diabetes (A1c ≥ 8%). The disparities in glycemic control and insulin treatment intensity could not be explained by differences in age, body mass index, oral hypoglycemic medications, socioeconomic barriers, attitudes about diabetes care, diabetes knowledge, depression, cognitive dysfunction, or social support. We found no significant racial/ethnic differences in lipid or blood pressure control. CONCLUSION: In our cohort, insulin-treated minority veterans, particularly AA, had poorer glycemic control and received lower doses of insulin than NHW. However, we found no differences for control of other cardiovascular disease risk factors. The diabetes treatment disparity could be due to provider behaviors and/or patient behaviors or preferences. Further research with larger sample sizes and more geographically diverse populations are needed to confirm our findings
Synthesis of the elements in stars: forty years of progress
Forty years ago Burbidge, Burbidge, Fowler, and Hoyle combined what we would now call fragmentary evidence from nuclear physics, stellar evolution and the abundances of elements and isotopes in the solar system as well as a few stars into a synthesis of remarkable ingenuity. Their review provided a foundation for forty years of research in all of the aspects of low energy nuclear experiments and theory, stellar modeling over a wide range of mass and composition, and abundance studies of many hundreds of stars, many of which have shown distinct evidence of the processes suggested by B2FH. In this review we summarize progress in each of these fields with emphasis on the most recent developments
Electrical and Optical Performance Characteristics of p/n InGaAs Monolithic Interconnected Modules
There has been a traditional trade-off in ThermoPhotoVoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A Monolithic Interconnected Module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual Indium Gallium Arsenide (InGaAs) devices series-connected on a single semi-insulating Indium Phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An InfraRed (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74eV InGaAs, have demonstrated V(sub infinity) = 3.2 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. IR reflectance measurements (greater than 2 microns) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55 eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated
High Efficiency InP Solar Cells from Low Toxicity Tertiarybutylphosphine
Large scale manufacture of phosphide based semiconductor devices by organo-metallic vapor phase epitaxy (OMVPE) typically requires the use of highly toxic phosphine. Advancements in phosphine substitutes have identified tertiarybutylphosphine (TBP) as an excellent precursor for OMVPE of InP. High quality undoped and doped InP films were grown using TBP and trimethylindium. Impurity doped InP films were achieved utilizing diethylzinc and silane for p and n type respectively. 16 percent efficient solar cells under air mass zero, one sun intensity were demonstrated with Voc of 871 mV and fill factor of 82.6 percent. It was shown that TBP could replace phosphine, without adversely affecting device quality, in OMVPE deposition of InP thus significantly reducing toxic gas exposure risk
Wheel Abrasion Experiment Metals Selection for Mars Pathfinder Mission
A series of metals was examined for suitability for the Wheel Abrasion Experiment, one of ten microrover experiments of the Mars Pathfinder Mission. The seven candidate metals were: Ag, Al, Au, Cu, Ni, Pt, and W. Thin films of candidate metals from 0.1 to 1.0 micrometer thick were deposited on black anodized aluminum coupons by e-beam and resistive evaporation and chemical vapor deposition. Optical, corrosion, abrasion, and adhesion criteria were used to select Al, Ni, and Pt. A description is given of the deposition and testing of thin films, followed by a presentation of experimental data and a brief discussion of follow-on testing and flight qualification
- …