921 research outputs found

    Performance of a Brief Assessment Tool for Identifying Substance Use Disorders

    Get PDF
    Objective: Evaluation of the performance of a brief assessment tool for identifying substance use disorders. The Triage Assessment for Addictive Disorders (TAAD) is a triage instrument that provides professionals with a tool to evaluate indications of current substance use disorders in accordance with the DSM-IV diagnostic criteria. The TAAD is a 31-item structured interview that addresses both alcohol and other drug issues to discriminate among those with no clear indications of a diagnosis, those with definite, current indications of abuse or dependence, and those with inconclusive diagnostic indications. Methods: Employing a sample of 1325 women between the ages of 18 and 60, reliability estimates and problem profiles produced by the TAAD were evaluated. Results: The Cronbach alpha coefficients for internal consistency for both the alcohol and drug dependence scales were .92. The alpha coefficients for the alcohol and drug abuse scales were .83 and .84 respectively. The diagnostic profiles elicited from the TAAD indicate that alcohol and drug dependences are the more definitive and distinct syndromes compared with the abuse syndromes. Conclusions: The diagnostic profiles from this sample are consistent with previous research. The Cronbach alpha coefficients suggest that the TAAD provides an internally consistent index for alcohol and drug dependence and abuse. Implications for use in clinical practice and the need for further research regarding the psychometric properties of the TAAD are discussed

    Quasiparticle scattering and local density of states in the d-density wave phase

    Full text link
    We study the effects of single-impurity scattering on the local density of states in the high-TcT_c cuprates. We compare the quasiparticle interference patterns in three different ordered states: d-wave superconductor (DSC), d-density wave (DDW), and coexisting DSC and DDW (DSC-DDW). In the coexisting state, at energies below the DSC gap, the patterns are almost identical to those in the pure DSC state with the same DSC gap. However, they are significantly different for energies greater than or equal to the DSC gap. This transition at an energy around the DSC gap can be used to test the nature of the superconducting state of the underdoped cuprates by scanning tunneling microscopy. Furthermore, we note that in the DDW state the effect of the coherence factors is stronger than in the DSC state. The new features arising due to DDW ordering are discussed.Comment: 6 page, 5 figures (Higher resolution figures are available by request

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Reaction rate sensitivity of 44Ti production in massive stars and implications of a thick target yield measurement of 40Ca(alpha,gamma)44Ti

    Full text link
    We evaluate two dominant nuclear reaction rates and their uncertainties that affect 44Ti production in explosive nucleosynthesis. Experimentally we develop thick-target yields for the 40Ca(alpha,gamma)44Ti reaction at E(alpha) = 4.13, 4.54, and 5.36 MeV using gamma-ray spectroscopy. At the highest beam energy, we also performed an activation measurement that agrees with the thick target result. From the measured yields a stellar reaction rate was developed that is smaller than current statistical-model calculations and recent experimental results, which would suggest lower 44Ti production in scenarios for the alpha-rich freeze out. Special attention has been paid to assessing realistic uncertainties of stellar rates produced from a combination of experimental and theoretical cross sections, which we use to develop a re-evaluation of the 44Ti(alpha,p)47V reaction rate. Using these we carry out a sensitivity survey of 44Ti synthesis in eight expansions representing peak temperature and density conditions drawn from a suite of recent supernova explosion models. Our results suggest that the current uncertainty in these two reaction rates could lead to as large an uncertainty in 44Ti synthesis as that produced by different treatments of stellar physics.Comment: Comments: 45 pages, 19 postscript figures Minor corrections from Referee and Proof Editors Figs 9 & 10 now in colo

    Effect of an Electron-phonon Interaction on the One-electron Spectral Weight of a d-wave Superconductor

    Full text link
    We analyze the effects of an electron-phonon interaction on the one-electron spectral weight A(k,omega) of a d_{x^2-y^2} superconductor. We study the case of an Einstein phonon mode with various momentum-dependent electron-phonon couplings and compare the structure produced in A(k,omega) with that obtained from coupling to the magnetic pi-resonant mode. We find that if the strength of the interactions are adjusted to give the same renormalization at the nodal point, the differences in A(k,omega) are generally small but possibly observable near k=(pi,0).Comment: 10 pages, 14 figures (color versions of Figs. 2,4,10,11,12 available upon request

    Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2

    Full text link
    High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc. However, because of the 'pseudogap' phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we report spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They enable us to observe the quasi-particle interference (QPI) effect in this material, through which unambiguous new information on the SG is obtained. The analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    Two Energy Scales and two Quasiparticle Dynamics in the Superconducting State of Underdoped Cuprates

    Full text link
    The superconducting state of underdoped cuprates is often described in terms of a single energy-scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the underdoped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the underdoped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the superconducting gap and antinodal regions. While antinodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations.Comment: 16 pages, 5 figure

    Quantum oscillations from Fermi arcs

    Full text link
    When a metal is subjected to strong magnetic field B nearly all measurable quantities exhibit oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface (FS). In this study we establish a new mechanism for quantum oscillations which requires only finite segments of a FS to exist. Oscillations periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our results reconcile the recent breakthrough experiments showing quantum oscillations in a cuprate superconductor YBCO, with a well-established result of many angle resolved photoemission (ARPES) studies which consistently indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal state of the cuprates.Comment: 8 pages, 5 figure

    Vortex structure in d-density wave scenario of pseudogap

    Full text link
    We investigate the vortex structure assuming the d-density wave scenario of the pseudogap. We discuss the profiles of the order parameters in the vicinity of the vortex, effective vortex charge and the local density of states. We find a pronounced modification of these quantities when compared to a purely superconducting case. Results have been obtained for a clean system as well as in the presence of a nonmagnetic impurity. We show that the competition between superconductivity and the density wave may explain some experimental data recently obtained for high-temperature superconductors. In particular, we show that the d-density wave scenario explains the asymmetry of the gap observed in the vicinity of the vortex core.Comment: 8 pages, 10 figure
    corecore