34 research outputs found

    Turbulence modeling for film cooling flows

    Get PDF
    An improved two equation turbulence model has been developed in this dissertation to better predict the complex film cooling flow field that is formed from the interaction of a coolant jet and a crossflow over a modeled turbine blade surface. Film cooling of turbine blades is commonly employed to effectively protect turbine blades from thermal failure and thereby to allow higher inlet temperatures in order to increase the efficiency of gas turbine engines. Film cooling involves the injection of rows of coolant jets from slots on the surface of a turbine blade which is then bent over by the crossflow gases to form a protective coolant film on the blade surface. The highly complex flow field arising from the impact of the coolant jet on the crossflow is the focus of the numerical investigation undertaken in this study. A systematic, step by step approach has been adopted in this work to analyze the flow physics of the film cooling problem and to get an accurate representation of the flow field through numerical simulations that employ Reynolds Averaged Navier Stokes (RANS) turbulence models. Towards this end, numerical predictions have been obtained for the flow problem at hand by employing available models in order to assess the present modeling capabilities. A wide range of turbulence models have been used and their deficiencies have been underscored in order to isolate avenues of model development. The exhaustive numerical investigation with existing models has then been followed by the development of an improved two equation model. The newly developed model has been validated for a wide range of flow problems and has thereafter been applied to the film cooling flow configuration under investigation in this study. Improvements in predictions obtained by the newly developed model have been highlighted and avenues of future work have been identified

    Film cooling of turbine blades

    Get PDF

    A numerical investigation of explicit pressure-correction projection methods for incompressible flows

    Get PDF
    A numerical investigation is performed on an explicit pressure-correction projection method. The schemes are fully explicit in time in the framework of the finite difference method. They are tested on benchmark cases of a lid-driven cavity flow, flow past a cylinder and flow over a backward facing step. Comparisons of the numerical simulations have been made with benchmark experimental and DNS data. Based on the results obtained, several numerical issues are discussed; namely, the handling of the pressure term, time discretization and spatial discretization of convective and diffusive terms. The fully explicit projection method is also compared with the fully implicit SIMPLE algorithm. It is observed that the SIMPLE algorithm performs better (faster and produces more accurate results) for laminar flows while the projection method works better for unsteady turbulent flows. Although there have been much research performed using the higher-order pressure incremental projection method, this research work is novel because the schemes employed here are fully explicit, developed in the framework of a finite difference method, and applied to turbulent flows using k- model. The major difficulty and challenges of this research work is to identify the sources of instability for the higher-order pressure incremental projection method scheme

    A comparative study of natural gas and biogas combustion in a swirling flow gas turbine combustor

    Get PDF
    In this study, non-premixed combustion of traditional fuel-natural gas, and an alternative fuel-biogas, is simulated in a swirling flow industrial gas turbine combustor geometry which includes the combustor liner and the outside casing in order to replicate the flow and combustion in a real gas turbine combustor. The 3D combustion simulations are validated and the results for combustion of both gases are analyzed to compare and evaluate the viability of biogas as an alternative fuel for use in industrial gas turbine combustors. The combustion performance is evaluated based on multiple combustion performance optimization parameters, namely, the combustion efficiency, pattern factor, and pollutant emissions (CO and NO). The effects of two design parameters: swirl number and fuel injector diameter on the combustion performance optimization parameters is examined. The results have been analyzed to identify the best case for each combustion performance optimization parameter and a suitable trade-off case for both gases is proposed. Additionally, the comparison of the combustion performances of both gases revealed that despite possessing much lower methane and hence lower heating value (LHV), a combination of swirl number and fuel injector diameter for biogas of a specific composition results in a combustion performance comparable to natural gas along with lower NO emission, although at the expense of higher CO emission. Therefore, biogas can potentially be utilized as an alternative fuel in industrial gas turbine combustors, and methods for reducing CO emission can be devise

    The application of multiphase DEM for the prediction of fat, oil and grease (FOG) deposition in sewer pipe lines

    Get PDF
    Fat oil and grease (FOG) deposition into sewer pipes can block the pipes and restrict the wastewater flow causing backflows and sanitary sewer overflows (SSOs). Understanding the wastewater flow and transport of FOG particles is a key step for predicting the particles deposition and blockage formation. ANSYS FLUENT was used for simulating the flow of FOG particles and its deposition onto the sewer pipe. The multiphase Eularian-Lagrangian model with discrete Phase method (DPM) was utilized for developing the CFD model. The kinetic parameters and physical values are based on previous experimental work and literature. The CFD Eularian-DEM multiphase model has shown a good potential for simulating the wastewater flow and demonstrated the applicability of CFD to simulate and track the transport and deposition of FOG particles into the sewer pipe walls
    corecore