17 research outputs found

    Connecting Homogalacturonan-Type Pectin Remodeling to Acid Growth

    No full text
    International audienceAccording to the 'acid growth theory', cell wall acidification controls cell elongation, therefore plant growth. This notably involves changes in cell wall mechanics through modifications of cell wall polysaccharide structure. Recently, advances in cell biology showed that changes in cell elongation rate can be mediated by the remodeling of pectins, and in particular of homogalacturonans (HGs). Their demethylesterification appears to be a key element controlling the chemistry and the rheology of the cell wall. We postulate that precise and dynamic modulation of extracellular pH plays a central role in the control of HG-modifying enzyme activities, and in particular those of pectin methylesterases and polygalacturonases. We propose that acid growth requires dynamic HG remodeling through the tight control of cell wall pH

    Structural and dynamical characterization of the pH-dependence of the pectin methylesterase–pectin methylesterase inhibitor complex

    No full text
    International audiencePectin methylesterases (PMEs) catalyze the demethylesterification of pectin, one of the main polysaccharides in the plant cell wall, and are of critical importance in plant development. PME activity generates highly negatively charged pectin and mutates the physiochemical properties of the plant cell wall such that remodeling of the plant cell can occur. PMEs are therefore tightly regulated by proteinaceous inhibitors (PMEIs), some of which become active upon changes in cellular pH. Nevertheless, a detailed picture of how this pH-dependent inhibition of PME occurs at the molecular level is missing. Herein, using an interdisciplinary approach that included homology modeling, MD simulations, and biophysical and biochemical characterizations, we investigated the molecular basis of PME3 inhibition by PMEI7 in Arabidopsis thaliana. Our complementary approach uncovered how changes in the protonation of amino acids at the complex interface shift the network of interacting residues between intermolecular and intramolecular. These shifts ultimately regulate the stability of the PME3–PMEI7 complex and the inhibition of the PME as a function of the pH. These findings suggest a general model of how pH-dependent proteinaceous inhibitors function. Moreover, they enhance our understanding of how PMEs may be regulated by pH and provide new insights into how this regulation may control the physical properties and structure of the plant cell wall

    In situ ESEM using 3-D printed and adapted accessories to observe living plantlets and their interaction with enzyme and fungus

    No full text
    International audienceThis paper describes an innovative way of using environmental scanning electron microscopy (ESEM) and the development of a suitable accessory to perform in situ observation of living seedlings in the ESEM. We provide details on fabrication of an accessory that proved to be essential for such experiments but inexpensive and easy to build in the laboratory, and present our in situ observations of the tissue and cell surfaces. Sample-specific configurations and optimized tuning of the ESEM were defined to maintain Arabidopsis and flax seedlings viable throughout repetitive exposure to the imaging conditions in the microscope chamber. This method permitted us to identify cells and tissues of the live plantlets and characterize their surface morphology during their early stage of growth and development. We could extend the application of this technique, to visualize the response of living cells and tissues to exogenous enzymatic treatments with polygalacturonase in Arabidopsis, and their interaction with hyphae of the wilt fungus Verticillium dahliae during artificial infection in flax plantlets. Our results provide an incentive to the use of the ESEM for in situ studies in plant science and a guide for researchers to optimize their electron microscopy observation in the relevant fields
    corecore