617 research outputs found

    Largest regular multigraphs with three distinct eigenvalues

    Get PDF
    We deal with connected kk-regular multigraphs of order nn that has only three distinct eigenvalues. In this paper, we study the largest possible number of vertices of such a graph for given kk. For k=2,3,7k=2,3,7, the Moore graphs are largest. For kβ‰ 2,3,7,57k\ne 2,3,7,57, we show an upper bound n≀k2βˆ’k+1n\leq k^2-k+1, with equality if and only if there exists a finite projective plane of order kβˆ’1k-1 that admits a polarity.Comment: 9 pages, no figur

    A generalization of Larman-Rogers-Seidel's theorem

    Get PDF
    A finite set X in the d-dimensional Euclidean space is called an s-distance set if the set of Euclidean distances between any two distinct points of X has size s. Larman--Rogers--Seidel proved that if the cardinality of a two-distance set is greater than 2d+3, then there exists an integer k such that a^2/b^2=(k-1)/k, where a and b are the distances. In this paper, we give an extension of this theorem for any s. Namely, if the size of an s-distance set is greater than some value depending on d and s, then certain functions of s distances become integers. Moreover, we prove that if the size of X is greater than the value, then the number of s-distance sets is finite.Comment: 12 pages, no figur

    Complex spherical codes with two inner products

    Get PDF
    A finite set XX in a complex sphere is called a complex spherical 22-code if the number of inner products between two distinct vectors in XX is equal to 22. In this paper, we characterize the tight complex spherical 22-codes by doubly regular tournaments, or skew Hadamard matrices. We also give certain maximal 2-codes relating to skew-symmetric DD-optimal designs. To prove them, we show the smallest embedding dimension of a tournament into a complex sphere by the multiplicity of the smallest or second-smallest eigenvalue of the Seidel matrix.Comment: 10 pages, to appear in European Journal of Combinatoric

    A characterization of skew Hadamard matrices and doubly regular tournaments

    Get PDF
    We give a new characterization of skew Hadamard matrices of size nn in terms of the data of the spectra of tournaments of size nβˆ’2n-2.Comment: 9 page

    On a generalization of distance sets

    Get PDF
    A subset XX in the dd-dimensional Euclidean space is called a kk-distance set if there are exactly kk distinct distances between two distinct points in XX and a subset XX is called a locally kk-distance set if for any point xx in XX, there are at most kk distinct distances between xx and other points in XX. Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of kk-distance sets on a sphere in 1977. In the same way, we are able to give the same bound for locally kk-distance sets on a sphere. In the first part of this paper, we prove that if XX is a locally kk-distance set attaining the Fisher type upper bound, then determining a weight function ww, (X,w)(X,w) is a tight weighted spherical 2k2k-design. This result implies that locally kk-distance sets attaining the Fisher type upper bound are kk-distance sets. In the second part, we give a new absolute bound for the cardinalities of kk-distance sets on a sphere. This upper bound is useful for kk-distance sets for which the linear programming bound is not applicable. In the third part, we discuss about locally two-distance sets in Euclidean spaces. We give an upper bound for the cardinalities of locally two-distance sets in Euclidean spaces. Moreover, we prove that the existence of a spherical two-distance set in (dβˆ’1)(d-1)-space which attains the Fisher type upper bound is equivalent to the existence of a locally two-distance set but not a two-distance set in dd-space with more than d(d+1)/2d(d+1)/2 points. We also classify optimal (largest possible) locally two-distance sets for dimensions less than eight. In addition, we determine the maximum cardinalities of locally two-distance sets on a sphere for dimensions less than forty.Comment: 17 pages, 1 figur
    • …
    corecore