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Abstract

We deal with connected k-regular multigraphs of order n that has
only three distinct eigenvalues. In this paper, we study the largest
possible number of vertices of such a graph for given k. For k = 2, 3, 7,
the Moore graphs are largest. For k ̸= 2, 3, 7, 57, we show an upper
bound n ≤ k2 − k + 1, with equality if and only if there exists a finite
projective plane of order k − 1 that admits a polarity.
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1 Introduction

Let G be a connected k-regular multigraph (V,E), which may have a loop.
For u, v ∈ V , let m(u, v) be the number of edges between u and v if u ̸= v,
and the number of loops on u if u = v. The adjacency matrix A of G is
defined to be the square matrix indexed by V whose (u, v) entry is m(u, v) if
{u, v} ∈ E and 0 otherwise. The eigenvalues of A are called the eigenvalues
of G. In this paper, we deal with a k-regular multigraph G with only 3
distinct eigenvalues. Since the degree of the minimal polynomial of A is
3, the diameter of G is at most 2. This implies that the Moore bound
|V | ≤ k2+1 holds for k-regular multigraphs with only 3 distinct eigenvalues.
If G attains this bound, G is called a Moore graph, which is simple. A Moore
graph does not exist except for (d, k) = (2, 2), (2, 3), (2, 7), (2, 57) [2, 5]. The
following Moore graphs uniquely exist: the 5-cycle for k = 2, the Petersen
graph for k = 3, and the Hoffman–Singleton graph for k = 7 [9]. For k = 57,
the existence of the Moore graph is still open. The main problem of this
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paper is to improve the Moore bound, and to determine the largest k-regular
multigraph with only 3 distinct eigenvalues for given k ≥ 3.

A k-regular simple graph of order n is called a strongly regular graph
with parameters (n, k, λ, µ) if there exist integers λ and µ such that any
two adjacent vertices have λ common neighbours, and any two non-adjacent
vertices have µ common neighbours. If a connected regular simple graph
has only 3 distinct eigenvalues, then it is strongly regular. If a connected
k-regular simple graph satisfies that any two adjacent vertices have at least
λ common neighbours, and any two non-adjacent vertices have at least µ
common neighbours, then the order n has the bound n ≤ k+1+k(k−1−λ)/µ
(see [3]). Strongly regular graphs are characterized as the graphs that attain
this bound.

The point-line geometry (P,L) is called a finite projective plane of order
q if |P| = |L| = q2 + q + 1, there exist q + 1 points in each line, and there
exist q + 1 lines through each point. The incidence matrix of (P,L) is the
matrix indexed by P and L whose (p, l) entry is 1 if p ∈ l, and 0 otherwise.
An isomorphism φ from (P,L) to the dual plane (L,P) is a polarity if φ is
an involution. We say (P,L) admits polarity if there exists a polarity from
(P,L) to (L,P). The classical finite projective planes admit a polarity. A
finite projective plane (P,L) admits a polarity if and only if the incidence
matrix of (P,L) can be symmetric. The symmetric incidence matrix of
(P,L) is the adjacency matrix of a (q − 1)-regular multigraph with only 3
distinct eigenvalues which has loops. For k ̸= 2, 3, 7, 57, we show an upper
bound n ≤ k2−k+1 for k-regular multigraphs of order n with only 3 distinct
eigenvalues. The equality holds if and only if the adjacency matrix of the
graph is the symmetric incidence matrix of a finite projective plane of order
k − 1 that admits a polarity.

The paper is organized as follows. In Section 2, the linear programming
bound [11] is generalized for connected regular multigraphs. We also give a
certain improvement of the Moore bound with prescribed distinct eigenval-
ues. In Section 3, we prove the upper bound n ≤ k2−k+1 for k ̸= 2, 3, 7, 57.
In Section 4, we show that the existence of a connected k-regular multigraph
G of order k2 − k + 1 with only 3 distinct eigenvalues is equivalent to the
existence of a finite projective plane PG(2, k − 1) that admits a polarity.

2 Bounds for regular multigraphs

Let G be a multigraph (V,E). For vj ∈ V and ej ∈ E, a sequence wp =
(v0, e1, v1, e2, v2, . . . , vp−1, ep, vp) is a walk if ej = {vj−1, vj} for each j ∈
{1, . . . , p}. We shortly write a walk wp = (e1, . . . , ep). The number p is
called the length of a walk. A walk wp is non-backtracking if there does not
exist j ∈ {1, . . . , p − 1} such that ej = ej+1, or p = 1. A non-backtracking
walk wp is a cycle if v0 = vp and v0, . . . , vp−1 are distinct. The minimum
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length of cycles in G is called the girth of G. If G has a loop, then the girth
of G is 1. It is well known that the (u, v)-entry of Ai is the number of walks
of length i from u to v. A multigraph G is k-regular if

∑
v∈V m(u, v) is k

for each u ∈ V .
Let F

(k)
i denote a polynomial of degree i defined by

F
(k)
0 (x) = 1, F

(k)
1 (x) = x, F

(k)
2 (x) = x2 − k,

and
F

(k)
i (x) = xF

(k)
i−1(x)− (k − 1)F

(k)
i−2(x)

for i ≥ 3. Note that F
(k)
i (k) = k(k − 1)i−1 for i ≥ 1.

Singleton [13] proved the following theorem only for k-regular simple
graphs.

Theorem 2.1. Let G be a connected k-regular multigraph with adjacency

matrix A. Then the (u, v)-entry of F
(k)
i (A) is the number of non-backtracking

walks of length i from u to v.

Proof. We use induction on i. Let b
(i)
uv be the number of non-backtracking

walks of length i from u to v. Let f
(i)
uv be the (u, v)-entry of F

(k)
i (A). For

i = 1, the assertion is trivial. For i = 2, the (u, v)-entry a
(2)
uv of A2 is the

number of walks of length 2 from u to v. A walk that has backtracking must

form (ei, ei). The assertion follows from b
(2)
uv = a

(2)
uv − kδuv, where δ is the

Kronecker delta.
Suppose f

(j)
uv = b

(j)
uv for each j ∈ {1, . . . , i − 1}. Since F

(k)
i (A) =

AF
(k)
i−1(A)− (k − 1)F

(k)
i−2(A), we have

f (i)
uv =

∑
s∈V

f (1)
us f

(i−1)
sv − (k − 1)f (i−2)

uv

=
∑
s∈V

b(1)us b
(i−1)
sv − (k − 1)b(i−2)

uv .

The value
∑

s∈V b
(1)
us b

(i−1)
sv is the number of walks (e1, . . . , ep) such that e1 =

{u, ∗}, ep = {∗, v}, and (e2, . . . , ep) is non-backtracking. We remove walks
that have backtracking, namely the ones satisfying e1 = e2. For given non-
backtracking walk (e3, . . . , ep), the number of choices of e1 is equal to k − 1

because e1 ̸= e3. Therefore f
(i)
uv = b

(i)
uv follows.

Let I denote the identity matrix. Let J denote the matrix whose entries
are all 1. In [11] we proved the following theorem only for k-regular simple
graphs.

Theorem 2.2. Let G be a connected k-regular multigraph of order n with
adjacency matrix A. Let τ0, . . . , τd be the distinct eigenvalues of A, where
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τ0 = k. Let f(x) be the polynomial defined by f(x) =
∑s

i=0 fiF
(k)
i (x) with

a positive integer s and real numbers f0, . . . , fs such that f0 > 0, fi ≥ 0 for
each i ∈ {1, . . . , s}. If f(k) > 0 and f(τj) ≤ 0 for each j ∈ {1, . . . , d}, then

n ≤ f(k)

f0
.

Proof. Since A is a real symmetric matrix, we have the spectral decompo-
sition A =

∑d
i=0 τiEi, where E0 = (1/n)J . It follows that

d∑
j=0

f(τj)Ej = f(A) =

s∑
i=0

fiF
(k)
i (A). (2.1)

Taking the traces in (2.1), we have

f(k) = tr(f(k)E0) ≥ tr

 d∑
j=0

f(τj)Ej


= tr

(
s∑

i=0

fiF
(k)
i (A)

)
≥ tr(f0I) = nf0,

because Ej is positive semidefinite, and each entry in F
(k)
i (A) is non-

negative by Theorem 2.1. It therefore follows n ≤ f(k)/f0.

Let ki = k(k − 1)i−1 and k0 = 1.

Theorem 2.3. Let G be a connected k-regular multigraph of order n with
adjacency matrix A. Let F (x) be the polynomial defined by

F (x) =

s∑
i=0

fiF
(k)
i (x) (2.2)

for some real numbers f0, . . . , fs. If the entries of F (A) are all positive,
then

n ≤
∑

i∈{0,...,d}:fi>0

ki. (2.3)

Proof. Since each (u, v)-entry of F (A) is positive, there exists i ∈ {0, . . . , d}
such that fi > 0 and the (u, v)-entry in F

(k)
i (A) is positive. For each u ∈ V ,

the number of non-backtracking walks of length i from u is equal to ki. Thus

the number of non-zero entries in F
(k)
i (A) is at most nki. Comparing the

numbers of positive entries in the both sides in (2.2), it follows that

n2 ≤
∑

i∈{0,...,s}:fi>0

nki.

This implies the theorem.
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Let HG(x) denote the Hoffman polynomial [7, 8] of a regular multigraph
G, which is the polynomial of least degree satisfying HG(A) = J . If the
distinct eigenvalues of G are τ0 = k, τ1, . . . , τd and the order of G is n, then
HG can be expressed by

HG(x) = n

d∏
i=1

x− τi
k − τi

.

Corollary 2.4. Let G be a k-regular multigraph of order n, with only d+1
distinct eigenvalues τ0 = k, τ1, . . . , τd. Let FG(x) be the polynomial defined by

FG(x) =
∏d

i=1(x− τi). Then, from the expression FG(x) =
∑d

i=0 fiF
(k)
i (x),

it follows that n ≤
∑

i∈{0,...,d}:fi>0 ki.

Proof. The polynomial FG(x) can be expressed by FG(x) = (
∏d

i=1(k −
τi)/n)HG(x). Therefore, each entry of FG(A) = (

∏d
i=1(k − τi)/n)J is posi-

tive. Applying Theorem 2.3 to FG(x), we obtain the bound n ≤
∑

i∈{0,...,d}:fi>0 ki.

If each fi is positive in Corollary 2.4, then the bound (2.3) coincides with
the Moore bound.

3 Upper bound for regular multigraphs with three
eigenvalues

In this section, we prove an upper bound for k-regular multigraphs with only
3 distinct eigenvalues, which means Theorem 3.5. First we prove several
lemmas to prove Theorem 3.5.

Lemma 3.1. Let G be a connected k-regular multigraph of order n with only
3 distinct eigenvalues k, τ1, τ2. If τ1 + τ2 ≥ 0, then n ≤ k2 − k + 1.

Proof. The polynomial FG(x) = (x− τ1)(x− τ2) can be expressed by

FG(x) = F
(k)
2 (x)− (τ1 + τ2)F

(k)
1 (x) + (k + τ1τ2)F

(k)
0 (x).

By τ1 + τ2 ≥ 0 and Corollary 2.4, we have n ≤ k0 + k2 = k2 − k + 1.

Lemma 3.2. In a multigraph of maximum degree at most k, if a vertex u
is incident with a multiedge then there are at most k2 − k vertices within
distance two of u.

Proof. Let v be a vertex adjacent to u with a multiedge. Then, it follows
that

|{w ∈ V : ∂(u,w) ≤ 2}| = 1 + |{w ∈ V : ∂(u,w) = 1}|+ |{w ∈ V : ∂(u,w) = 2}|
≤ 1 + (k − 1) + |{w ∈ V : ∂(u,w) = 2, (v, w) ∈ E}|

+ |{w ∈ V : ∂(u,w) = 2, (v, w) /∈ E}|
≤ 1 + (k − 1) + (k − 2) + (k − 1)(k − 2) = k2 − k,
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where ∂(u,w) is the distance between u and w.

Let lv denote the number of loops of v ∈ V .

Lemma 3.3. Let G be a connected k-regular multigraph of order n with
only 3 distinct eigenvalues. If n > k2 − k+1, then G is simple and strongly
regular.

Proof. It suffices to show that G is simple. Let τ1, τ2 be the distinct eigen-
values of G with τ1, τ2 ̸= k. By Lemma 3.1, we have τ1 + τ2 < 0. By
Lemma 3.2, G has no multiedge. The Hoffman polynomial of G can be
expressed by

HG(x) = n
(x− τ1)(x− τ2)

(k − τ1)(k − τ2)
.

It therefore follows that

n(A2 − (τ1 + τ2)A+ τ1τ2I) = (k − τ1)(k − τ2)J , (3.1)

where A is the adjacency matrix of G. Comparing the (v, v)-entry of the
both sides in (3.1), we obtain

l2v − (τ1 + τ2 + 1)lv =
1

n
(k − τ1)(k − τ2)− k − τ1τ2.

The value l2v − (τ1 + τ2 + 1)lv is constant for each v ∈ V . If lv > 0 for each
v ∈ V , then

n ≤ 1 + (k − 2) + (k − 2)(k − 2) = k2 − 3k + 3 < k2 − k + 1,

which contradicts our assumption. We may suppose some v ∈ V satisfies
lv = 0. This implies that l2u − (τ1 + τ2 + 1)lu = 0, namely lu = 0 or
lu = τ1 + τ2 + 1 for each u ∈ V . Since τ1 + τ2 < 0 holds, it follows that
lu = τ1 + τ2 + 1 < 1 and lu = 0 for each u ∈ V .

Lemma 3.4. Let G be a connected k-regular multigraph of order n with only
3 distinct eigenvalues. If n > k2−k+1 and k ≥ 3, then there does not exist
G except for Moore graphs. If n > k2 − k+1 and k = 2, then G is the cycle
graph of order 4 or 5.

Proof. By Lemma 3.3, G is strongly regular, and let (n, k, λ, µ) be the pa-
rameters of G. The assertion clearly holds for k = 2. Suppose k ≥ 3. Let τ1,
τ2 be the distinct eigenvalues of G with τ1, τ2 ̸= k. For connected strongly
regular graphs, it follows that µ ̸= 0. If µ ≥ 2, then

n = k + 1 +
k2 − λk − k

µ
≤ k2

2
+

k

2
+ 1 ≤ k2 − k + 1 (3.2)

from k ≥ 3. Thus µ = 1. If λ = 0, then G is a Moore graph. If λ = 1,
then G gives rise to a projective plane with a polarity containing no absolute
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points, which is not possible [6]. If λ > 1, then there exists an integer s such
that k = s(λ+ 1) and n = 1 + s(λ+ 1) + s(s− 1)(λ+ 1)2 [6], which gives

n = 1 + k + k2 − s(λ+ 1)2 ≤ 1 + k + k2 − 3k < k2 − k + 1.

Theorem 3.5. Let G be a connected k-regular multigraph of order n with
only 3 distinct eigenvalues. Then, one has n ≤ k2 − k+1 for k ̸= 2, 3, 7, 57.

Proof. By Lemma 3.4, if n > k2 − k + 1, then G is a Moore graph. There
does not exist a Moore graph except for k ∈ {2, 3, 7, 57} [2, 5]. This implies
the theorem.

4 Largest regular multigraphs with three eigenval-
ues

For k ̸= 2, 3, 7, 57, we have n ≤ k2 − k + 1 by Theorem 3.5. The largest
multigraphs are constructed from finite projective planes. Refer to [12] for
projective planes. Suppose q = k − 1 is a prime power. Let Fq be the finite
field of order q. Let Vq be a 3-dimensional vector space over Fq. Let Pq

(resp. Lq) be the set of all 1-dimensional (resp. 2-dimensional) subspaces of
Vq. Note that |Pq| = |Lq| = q2 + q + 1 = k2 − k + 1. A point p ∈ Pq is
incident with a line l ∈ Lq if p ⊂ l. The point-line geometry (Pq,Lq) is
called a classical finite projective plane. Let Γq denote the incidence graph
of (Pq,Lq). The graph Γq is bipartite and its adjacency matrix can be
expressed by (

O A

A⊤ O

)
,

where A is the incidence matrix of (Pq,Lq). The set of eigenvalues of Γq is
{±(q + 1),±√

q}. We may suppose A is symmetric by the correspondence
{(p, l) ∈ Pq ×Lq : p ⊥ l}, where we use the usual inner product of Vq. This
implies that A is the adjacency matrix of a (q + 1)-regular graph Gq and
has only 3 distinct eigenvalues {q + 1,±√

q}. Note that Gq has loops. For
any prime power q, the graph Gq is a largest k-regular multigraph attaining
the bound from Theorem 3.5.

The following is a necessary condition for a graph to attain the bound
from Theorem 3.5.

Lemma 4.1. Let G be a connected k-regular multigraph of order n with only
3 distinct eigenvalues k, τ1, τ2. If n = k2 − k+1, then G has a loop and no
multiedge, lv ∈ {0, 1} for each v ∈ V , and τ1 + τ2 = 0.

Proof. By n = k2 − k + 1 and Lemma 3.2, there does not exist a multiedge
in G. If there exists v ∈ V such that lv > 1, then

n ≤ 1 + (k − 2) + (k − 2)(k − 1) = k2 − 2k + 1 < k2 − k + 1.
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Thus lv ≤ 1 for each v ∈ V . As we see in the proof of Lemma 3.3, there
exists v ∈ V such that lv = 0. Moreover l2u − (τ1 + τ2 + 1)lu = 0, namely
lu = 0 or lu = τ1 + τ2 + 1 for each u ∈ V . If there exists u ∈ V such that
lu = τ1+τ2+1 = 1, then τ1+τ2 = 0. Assume lu = 0 for each u ∈ V . Now G
is a strongly regular graph with parameters (v, k, λ, µ). If µ ≥ 2, then (3.2)
holds. The last equality in (3.2) is attained only for (n, k) = (7, 3), which is
impossible. Thus µ = 1. By the same argument as the last part in the proof
of Lemma 3.4, for any λ there does not exist G of order k2 − k + 1.

The following is the main theorem in this section.

Theorem 4.2. The existence of a connected k-regular multigraph G of order
k2 − k+1 with only 3 distinct eigenvalues is equivalent to the existence of a
finite projective plane PG(2, k − 1) that admits a polarity.

Proof. If a finite projective plane PG(2, k−1) that admits a polarity exists,
then the incidence matrix can be symmetric, and it is the adjacency matrix
of a k-regular multigraph of order k2−k+1 with only 3 distinct eigenvalues.

Let G be a connected k-regular multigraph of order k2− k+1 with only
3 distinct eigenvalues. By Lemma 4.1, the eigenvalues are k,±τ , and the
bipartite double graph G′ of G is simple. Since the eigenvalues of G′ are
±k,±τ , the diameter of G′ is at most 3. Thus the graph G′ attains the
bipartite Moore bound n ≤ 2(1 + (k − 1) + (k − 1)2) = 2(k2 − k + 1), and
the girth of G′ is 6. The graph G′ is the cage v(k, 6), and G′ must be the
incidence graph of a finite projective plane PG(2, k−1) (see [3, Section 6.9]).
Now the incidence matrix of the projective plane PG(2, k−1) is symmetric,
and hence there exists a polarity on it.

By Theorem 4.2, largest k-regular multigraphs with only 3 distinct eigen-
values are obtained for a prime power q = k−1. Open cases of small degrees
are k = 11, 13, 15, 16, 19, 21, 22, 23, . . .. For q ≡ 1, 2 (mod 4), if a projective
plane of order q exists, then q is the sum of two integral squares [4]. There-
fore for k = 13 a projective plane of order 14 does not exist. For k = 11,
there does not exist a finite projective plane of order 10 by a computer search
[10]. If A is the adjacency matrix of some k-regular multigraph, then A+ tI
is that of a (k+ t)-regular multigraph, and has the same number of distinct
eigenvalues as A. This construction gives a candidate of the largest graph
when a projective plane does not exist.
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