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1. Introduction

Ann×nmatrixHwithentries±1 is aHadamardmatrixofordern ifHHT = nI. Hadamardmatricesof

order n exist only if n is two or amultiple of four. AHadamardmatrixH is said to be skew ifH+HT = 2I,

where I denotes the identity matrix. It was conjectured that Hadamard matrices and skew Hadamard

matrices of order n exist for n = 4k for any positive integer k. Hadamard matrices appear in theory of

combinatorics; finite incomplete block designs, orthogonal arrays and the D-optimal designs [1].

It has been shown that the existence of the following are equivalent:

(1) Skew Hadamard matrices of order n.

(2) Doubly regular tournaments of order n − 1 [9].

< Research supported by JSPS Research Fellowship.∗ Corresponding author.

E-mail addresses: hnozaki@auecc.aichi-edu.ac.jp (H. Nozaki), p001883e@nt.icu.ac.jp (S. Suda).

0024-3795/$ - see front matter © 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2012.04.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82494638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.laa.2012.04.001
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2012.04.001


H. Nozaki, S. Suda / Linear Algebra and its Applications 437 (2012) 1050–1056 1051

(3) Irreducible tournaments of order n having 4 distinct eigenvalues, one of which is zero with

algebraic multiplicity 1 [7].

(4) Tournaments of order n−1with spectrum

{
k1,

(
−1+√−k

2

)k

,

(
−1−√−k

2

)k}
, where n = 2k+2

[12].

(5) Regular tournaments of order n − 1 with three distinct eigenvalues [10].

For a skewHadamardmatrixH, we normalizeH so that the first rowofH consists of the all-ones vector.

We can construct a (0, 1)-matrix A by A = 1
2
(J − H), where J denotes the all-ones matrix. Then A is

the adjacency matrix of a tournament satisfying condition (3). For such a matrix A, we consider the

principal submatrix A1 of order n−1 by deleting the first row and column. Then A1 satisfies conditions

(2), (4) and (5),–and vice versa. Thus skew Hadamard matrices of order n are characterized by certain

tournaments of order n − 1.

As described above, the characterization of some property of an oriented graph in terms of the

spectrum of its adjacency matrix is important and useful. For example, a tournament is regular if and

only if its adjacency matrix has the all-ones vector as an eigenvector.

In algebraic graph theory, the adjacencymatrix plays an important role [4,5]. The adjacencymatrix

of an undirected graph is always diagonalizable. However that of an oriented graph is not necessarily

diagonalizable, and hence dealing with the adjacency matrix for an oriented graph is more difficult

than the case of an undirected graph. In the area of two-graphs the Seidel matrix, a (0, ±1)-adjacency
matrix, is used [5, Section 11]. The Seidel matrix for an oriented graph is defined naturally, and since

it is always Hermitian, it is easy to use the Seidel matrix in the case of an oriented graph.

In the present paper, we give another characterization of a skew Hadamard matrix of order n in

terms of the spectrum of the Seidel matrix of a tournament of order n − 2. Our main theorem is as

follows:

Theorem 1.1. Let n = 4k + 3, where k is a non-negative integer. Then there exists a doubly regular

tournament of order n if and only if there exists a tournament of order n−1with adjacency matrix A1 such

that S1 = √−1(A1 − AT
1) satisfies the following spectral condition:

(θ̃i)
4
i=1 = (

√
n, 1, −1, −√

n) with β̃1 = β̃4 = 0, β̃2 = β̃3 = 1√
2
. (1.1)

Here θ̃i (1 � i � 4) are the distinct eigenvalues of S1 and β̃i (1 � i � 4) are the corresponding

main angles of S1 as defined in Section 2. See Theorem 2.5 and Remark 2.6 for the spectra of doubly

regular tournaments.

In Section 2, we prepare the fundamental notation for oriented graphs and characterize the tour-

nament whose adjacencymatrix has a certain spectrum in terms of the spectrum of the Seidel matrix.

In Section 3, we prove Theorem 1.1.

2. Tournaments and their Seidel matrices

Let G = (V, E) be an oriented graph of order n; thus the vertex set V consists of n elements and the

edge set E ⊂ V × V satisfies E ∩ ET = ∅, where ET := {(x, y) | (y, x) ∈ E}. The adjacency matrix A of

G is indexed by the vertex set V , and its entries are defined as follows:

Axy =
{
1 if (x, y) ∈ E,

0 otherwise.

Since E satisfies E ∩ ET = ∅, A satisfies A ◦ AT = 0, where ◦ is the entrywise product of matrices and

0 denotes the zero matrix. The Seidel matrix S of G is defined by S = √−1(A− AT ). An oriented graph

G is said to be a tournament if its adjacency matrix satisfies A + AT = J − I. The vector A1 is called the

score vector of the tournament, where 1 is the all-ones column vector. Denote the score vector of A by

s and the i-th entry of s by si. A tournament G of order n is regular if all entries of the score vector are

equal to (n − 1)/2, which implies that n must be odd. A regular tournament G is doubly regular if the
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number of common neighbors of a pair of distinct vertices does not depend on the choice of the pair.

A tournament G of even order n is almost regular if the entries of the column vector A1 are n/2 and

(n − 2)/2, each appearing n/2 times.

A squarematrixM is said to be normal ifMM∗ = M∗M, whereM∗ denotes the transpose conjugate

of M. It is known that a normal matrix M can be diagonalized by a unitary matrix, equivalently the

eigenspaces corresponding to different eigenvalues are orthogonal. Let τi (1 � i � s) be the distinct

eigenvalues of M. Let mi be the multiplicity of τi, and Ei the eigenspace of τi. Let Pi be the orthogonal

projection matrix onto Ei. Then P∗
i = Pi,

∑s
i=1 Pi = I and PiPj = δijPi, where δij denotes the Kronecker

delta. The notion ofmain angles for the adjacencymatrix of a simple undirected graphwas introduced

in [2]; see [11] for the recent progress. Here we consider the same concept for the n×n normal matrix

M. Define βi by

βi := 1√
n

√
(Pi · 1)∗(Pi · 1).

We call βi themain angle of τi. By the definition of main angles, we have

s∑
i=1

β2
i = 1. (2.1)

Let G be a tournament of order n with adjacency matrix A and Seidel matrix S. Let {θi}si=1 be the

distinct eigenvalues of A. Let mi be the algebraic multiplicity of θi. When A is normal, we denote the

main angle of θi by βi.

Since the Seidel matrix S is normal, we may define the main angles of S. Moreover S is Hermitian,

and all eigenvalues of S are real. Let θ̃1 > · · · > θ̃s̃ be the distinct eigenvalues of S and let m̃i, β̃i be the

multiplicity and the main angle of θ̃i for 1 � i � s̃. The spectral decomposition of the Seidel matrix is

S = ∑s̃
i=1 θ̃iPi. The following are fundamental results on S.

Lemma 2.1. Let G be a tournament of order n with Seidel matrix S. Then

(1) θ̃s̃+1−i = −θ̃i , m̃s̃+1−i = m̃i and β̃s̃+1−i = β̃i for 1 � i � s̃,

(2)
∑s̃

i=1 m̃i = n and
∑s̃

i=1 m̃iθ̃
2
i = n2 − n.

(3) G is regular if and only if S1 = 0.

Proof. Let A be the adjacency matrix of G.

(1) Follows from that
√−1S is skew-symmetric.

(2) Follows from taking the traces of
∑s̃

i=1 Pi = I and
∑s̃

i=1 θ̃2
i Pi = S2 = −A2−(AT )2+AAT +ATA.

(3) Follows from the fact that S1 = 0 is equivalent to si = n − 1 − si (1 � i � n). �

The following lemma characterizes almost regularity of a tournament in terms of spectral data for

the Seidel matrix.

Lemma 2.2. Let n be an even integer at least two and G a tournament of order n. Then the following are

equivalent:

(1) G is almost regular,

(2)
∑s̃

i=1 θ̃2
i β̃2

i = 1.

Proof. First the following equality holds for any tournament:

n∑
i=1

si = sT1 = 1TA1 = 1
2
1T (A + AT )1 = 1

2
1T (J − I)1 = n(n−1)

2
. (2.2)
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Since the order of the tournament is even, n
4

� ∑n
i=1(si − n−1

2
)2 holds. Using (2.2) we have

sTs � n(n2−2n+2)
4

, (2.3)

with equality if and only if G is almost regular.

We calculate sTs in terms of the data of the Seidel matrix. From S = √−1(2A − J + I) we have

s = 1
2
((n − 1)1 − √−1S1). Since

sTs = 1

4
((n − 1)21T1 + 1T S21)

= 1

4

(
n(n − 1)2 + n

s̃∑
i=1

θ̃2
i β̃2

i

)
,

G is almost regular if and only if
∑s̃

i=1 θ̃2
i β̃2

i = 1. �

For a square matrix A, we denote the characteristic polynomial of A by PA(x), that is PA(x) =
det(A − xI). We use the following lemma to prove Theorem 1.1. See [3, p.90] for the proof. Its proof is

valid for normal matrices.

Lemma 2.3. Let M be a normal matrix, τi the distinct eigenvalues of M, and βi the main angle of τi. Let c
be a complex number. Then

PM+cJ(x) = PM(x)

(
1 + c

s∑
i=1

nβ2
i

τi − x

)
.

Applying Lemma 2.3 to the Seidel matrix of a tournament, we have the following corollary:

Corollary 2.4. Let G be a tournament of order n with adjacency matrix A and Seidel matrix S. Then the

following holds:

PA(x) =
(

−√−1

2

)n

PS(
√−1(2x + 1))

(
1 + √−1

s̃∑
i=1

nβ̃2
i

θ̃i−√−1(2x+1)

)
. (2.4)

Proof. Since A = 1
2
(−√−1S − I + J) holds, applying Lemma 2.3 yields the following equations;

PA(x) = det(A − xI)

=
(

−√−1

2

)n

det(S + √−1J − √−1(2x + 1)I)

=
(

−√−1

2

)n

PS(
√−1(2x + 1))

⎛
⎝1 + √−1

s̃∑
i=1

nβ̃2
i

θ̃i−√−1(2x+1)

⎞
⎠ . �

Theorem 2.5. Let G be a tournament of order n with adjacency matrix A and Seidel matrix S. Then the

following are equivalent:

(1) G is doubly regular,

(2) A is such that s = 3 and (θi)
3
i=1 =

(
n−1
2

,
−1+√−n

2
,

−1−√−n

2

)
,

(3) S is such that s̃ = 3, (θ̃i)
3
i=1 = (

√
n, 0, −√

n), and (β̃i)
3
i=1 = (0, 1, 0).

Proof. (1) ⇔ (2): The equivalence is proven in [12, Theorem 3.2].
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(1), (2) ⇒ (3): Note that by [12] PA(x) = −
(
x − n−1

2

)(
x2 + x + n+1

4

) n−1
2

and A is a normal

matrix. Since G is regular, the main angles of A are given by (βi)
3
i=1 = (1, 0, 0). Applying Lemma 2.3

yields the following equation:

PS(x) = −x(x2 − n)
n−1
2 .

Since G is regular, β̃1 and β̃3 are zero, and thus β̃2 is one.

(3) ⇒ (2): By Lemma 2.1 (1) and (2), (m̃i)
3
i=1 =

(
n−1
2

, 1, n−1
2

)
. Then it follows from Corol-

lary 2.4. �

Remark 2.6. Themultiplicities of eigenvalues for the adjacencymatrix and the Seidelmatrix are given

by (mi)
3
i=1 =

(
1, n−1

2
, n−1

2

)
and (m̃i)

3
i=1 =

(
n−1
2

, 1, n−1
2

)
.

Theorem 2.7. Let G be a tournament of order n − 1 with adjacency matrix A and Seidel matrix S. Then

the following are equivalent:

(1) A is such that s = 4, (θi)
4
i=1 =

(
−1+√−n

2
,

−1−√−n

2
,
n−3+√

(n−3)(n+1)
4

,
n−3−√

(n−3)(n+1)
4

)
,

(2) S is such that s̃ = 4, (θ̃i)
4
i=1 = (

√
n, 1, −1, −√

n), (β̃i)
4
i=1 =

(
0, 1√

2
, 1√

2
, 0

)
.

Proof. (1) ⇒ (2): The algebraic multiplicities of θ1 and θ2 (θ3 and θ4) are equal since they are

algebraically conjugate. Define m1 (resp. m3) as the algebraic multiplicity of θ1 (resp. θ3). Since the

size of the matrix A is n − 1 and the trace of A is 0, we have

2m1 + 2m3 = n − 1,

−m1 + n−3
2

m3 = 0.

These equations yield m1 = n−3
2

, m3 = 1. By [7, Lemma 1(i)], all eigenvectors of A for eigenvalue

θi for i = 1, 2 are also eigenvectors of S with eigenvalue −2Imθi. Moreover by [7, Lemma 1(i)] the

corresponding main angles are zero. Since the dimension of the subspace of C
n−1 spanned by those

eigenvectors is 2m1 = n−3 and S is skew-symmetric, we set the remaining eigenvalues of S as τ, −τ ,
where τ is a non-negative real number. By Lemma 2.1 (2), we obtain n(n−3)+2τ 2 = (n−1)(n−2).

Thus τ = 1 and (θ̃i)
4
i=1 = (

√
n, 1, −1, −√

n). By (2.1) and Lemma2.1 (1), (β̃i)
4
i=1 =

(
0, 1√

2
, 1√

2
, 0

)
.

(2) ⇒ (1): By Lemma 2.1 (1) and (2), (m̃i)
4
i=1 =

(
n−3
2

, 1, 1, n−3
2

)
. Then (1) follows from Corol-

lary 2.4. �

Remark 2.8

(1) When G is a tournament satisfying the conditions in Theorem 2.7, the algebraic multiplicities

of the eigenvalues for the adjacency matrix and the Seidel matrix are given by

(mi)
4
i=1 =

(
n−3
2

, n−3
2

, 1, 1

)
, (m̃i)

4
i=1 =

(
n−3
2

, 1, 1, n−3
2

)
(2.5)

(2) As will be shown in the next section, the tournament of order n − 1 considered in Theorem 2.7

is obtained from a doubly regular tournament of order n.
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3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let G be a doubly regular tournament of order n = 4k + 3 with adjacency

matrix A. Take a vertex x in G. Let A1 be the adjacency matrix of the graph obtained by deleting the

vertex x from G, namely after reordering of the vertices of the tournament G we have

A =
⎛
⎝ 0 vT

1 − v A1

⎞
⎠ , (3.1)

where v is a (0, 1)-column vector. We calculate the spectrum of A1. Let τ1 � · · · � τn−1 be all

the eigenvalues of the Seidel matrix S1 = √−1(A1 − AT
1). The interlacing eigenvalues theorem for

bordered matrices [6, Theorem 4.3.8] shows that

τ1 = · · · = τ2k = √
n,

τ2k+3 = · · · = τn−1 = −√
n.

Next we determine τ2k+1 and τ2k+2. By Lemma 2.1 (1) τ2k+1 = −τ2k+2. And by Lemma 2.1 (2)

τ 2
2k+1 + τ 2

2k+2 + 2̇

(
n−1
2

− 1

)
n = n2 − 3n + 2. Thus τ2k+1 = −τ2k+2 = 1 as desired. It follows

from A2 = kA + (k + 1)AT and (3.1) that A11 = 2k1 + v, A1v = k1, AT
11 = (2k + 1)1 − v and

AT
1v = (k + 1)1 − v. Thus y = 1 + (

√−1 − 1)v is the eigenvector of S1 with eigenvalue 1, and

its conjugate vector is that of S1 with eigenvalue −1. Now we denote by θ̃1 > · · · > θ̃4 the distinct

eigenvalues of S1,βi (i = 1, . . . , 4) the correspondingmain angles. Then direct calculation of the norm

of yT1 and ȳT1, where ȳ denotes the complex conjugate vector of y, shows that β̃2 = β̃3 = 1√
2
. By

(2.1) we have β̃1 = β̃4 = 0.

Conversely let G1 be a tournament of order n − 1 with adjacency matrix A1 and Seidel matrix S1

satisfying property (1.1). By Remark 2.8 (1) the multiplicities of S1 are (m̃i)
4
i=1 =

(
n−3
2

, 1, 1, n−3
2

)
. It

follows from Lemma 2.2 that G1 is almost regular.

Hence we can add one more vertex to G1 so that it becomes a regular tournament G of order n. Let

S be the Seidel matrix of G. We may express

S =
⎛
⎝ 0 wT

−w S1

⎞
⎠

for some (±√−1)-column vector w such thatwT1 = 0 and S11 = w. Then by Lemma 2.3 we have

PS(t) = det

⎛
⎝ −t wT

−w −tI + S1

⎞
⎠

= det

⎛
⎝ −t wT

−t1 −tI + S1

⎞
⎠

= det

⎛
⎝−nt −t1T

−t1 −tI + S1

⎞
⎠

= t det

⎛
⎝−n −1T

0 −tI + S1 + t
n
J

⎞
⎠

= (−n)tP
S1+ t

n
J
(t)
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= (−n)tPS1(t)

(
1 + (n−1)t

n

4∑
i=1

β̃2
i

θ̃i−t

)

= (−n)t(t2 − n)
n−3
2 (t2 − 1)

(
1 + (n−1)t

n

(
1/2

−1−t
+ 1/2

1−t

))

= −t(t2 − n)
n−1
2 .

Since G is regular, the main angle corresponding to the eigenvalue 0 is one and the others are zero.

Therefore G is a doubly regular tournament by Theorem 2.5. �
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