116 research outputs found

    Involvement of Cyclin-Dependent Kinase-Like 2 in Cognitive Function Required for Contextual and Spatial Learning in Mice

    Get PDF
    Cyclin-dependent kinase-like 2 (Cdkl2) is a cdc2-related serine/threonine protein kinase that is postnatally expressed in various brain regions, including the cerebral cortex, entorhinal cortex, hippocampus, amygdala, and dorsal thalamus. The extremely high Cdkl2 expression in these regions suggests that it has a role in cognition and emotion. Recent genetic studies indicate that mutations of Cdkl family kinases are associated with neurodevelopmental and neuropsychiatric disorders in humans. To elucidate the physiologic role of Cdkl2, we behaviorally analyzed Cdkl2LacZ/LacZ mice lacking Cdkl2. Cdkl2LacZ/LacZ mice had reduced latencies to enter the dark compartment after electric footshock in an inhibitory avoidance task and attenuated contextual fear responses when exposed to mild training conditions. Hippocampal spatial learning in the Morris water maze was slightly anomalous with mice exhibiting an abnormal swimming pattern. The aversive response in a two-way avoidance task was slightly, but not significantly, enhanced. On the other hand, Cdkl2LacZ/LacZ mice did not exhibit altered sensitivity to aversive stimuli, such as electric footshock and heat, or deficits in the elevated plus maze or rotating rod test. These findings suggest that Cdkl2 is involved in cognitive function and provide in vivo evidence for the function of Cdkl family kinases expressed in terminally differentiated neurons in mice

    Development of a novel evaluation method for air particles using surface plasmon resonance spectroscopy analysis

    Get PDF
    The aim of this study was to develop a novel evaluation method for air particles using surface plasmon resonance spectroscopy (SPR) analysis. An L1 sensor chip modified with immobilized liposome was used as a model of the membrane of epithelial cells in organs of respiration. A test suspension of dispersed air particles was flowed onto the sensor chip. The interaction between the surface of the sensor chip and particulates in the sample solution was detected by SPR. It is deduced that the SPR measurement provides information about the adsorption/desorption behavior of the particles on the membrane. Environmentally certified reference materials, diesel particulate matter, vehicle exhaust particulates, urban particulate matter, coal fly ash, and rocks, were used as air particulate samples. Filtrates of suspensions of these samples were analyzed by SPR. Each sample revealed characteristic SPR sensor-gram patterns. For example, diesel particulate matter strongly interacted with the lipid bilayer, and was hardly dissociated. On the other hand, coal fly ash and rock particles interacted poorly with the membrane. The presented method could be used to evaluate or characterize air particles.ArticleANALYST. 138(18):5437-5443 (2013)journal articl

    Hypofractionated Stereotactic Radiotherapy (HypoFXSRT) for Stage I Non-small Cell Lung Cancer: Updated Results of 257 Patients in a Japanese Multi-institutional Study

    Get PDF
    IntroductionHypofractionated stereotactic radiotherapy (HypoFXSRT) has recently been used for the treatment of small lung tumors. We retrospectively analyzed the treatment outcome of HypoFXSRT for stage I non-small cell lung cancer (NSCLC) treated in a Japanese multi-institutional study.MethodsThis is a retrospective study to review 257 patients with stage I NSCLC (median age, 74 years: 164 T1N0M0, 93 T2N0M0) were treated with HypoFXSRT alone at 14 institutions. Stereotactic three-dimensional treatment was performed using noncoplanar dynamic arcs or multiple static ports. A total dose of 18 to 75 Gy at the isocenter was administered in one to 22 fractions. The median calculated biological effective dose (BED) was 111 Gy (range, 57–180 Gy) based on α/β = 10.ResultsDuring follow-up (median, 38 months), pulmonary complications of above grade 2 arose in 14 patients (5.4%). Local progression occurred in 36 patients (14.0%), and the local recurrence rate was 8.4% for a BED of 100 Gy or more compared with 42.9% for less than 100 Gy (p< 0.001). The 5-year overall survival rate of medically operable patients was 70.8% among those treated with a BED of 100 Gy or more compared with 30.2% among those treated with less than 100 Gy (p< 0.05).ConclusionsAlthough this is a retrospective study, HypoFXSRT with a BED of less than 180 Gy was almost safe for stage I NSCLC, and the local control and overall survival rates in 5 years with a BED of 100 Gy or more were superior to the reported results for conventional radiotherapy. For all treatment methods and schedules, the local control and survival rates were better with a BED of 100 Gy or more compared with less than 100 Gy. HypoFXSRT is feasible for curative treatment of patients with stage I NSCLC

    Development of a novel evaluation method for air particles using surface plasmon resonance spectroscopy analysis

    Get PDF
    The aim of this study was to develop a novel evaluation method for air particles using surface plasmon resonance spectroscopy (SPR) analysis. An L1 sensor chip modified with immobilized liposome was used as a model of the membrane of epithelial cells in organs of respiration. A test suspension of dispersed air particles was flowed onto the sensor chip. The interaction between the surface of the sensor chip and particulates in the sample solution was detected by SPR. It is deduced that the SPR measurement provides information about the adsorption/desorption behavior of the particles on the membrane. Environmentally certified reference materials, diesel particulate matter, vehicle exhaust particulates, urban particulate matter, coal fly ash, and rocks, were used as air particulate samples. Filtrates of suspensions of these samples were analyzed by SPR. Each sample revealed characteristic SPR sensor-gram patterns. For example, diesel particulate matter strongly interacted with the lipid bilayer, and was hardly dissociated. On the other hand, coal fly ash and rock particles interacted poorly with the membrane. The presented method could be used to evaluate or characterize air particles.ArticleANALYST. 138(18):5437-5443 (2013)journal articl

    Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    Get PDF
    Purpose: The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods: This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm × 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm × 16 or 0.5 mm × 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. Results: The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P <.0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P <.0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary ves sels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Conclusion: Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners
    corecore