1,617 research outputs found

    CmC^m-theory of damped wave equations with stabilisation

    Get PDF
    The aim of this note is to extend the energy decay estimates from [J. Wirth, J. Differential Equations 222 (2006) 487--514] to a broader class of time-dependent dissipation including very fast oscillations. This is achieved using stabilisation conditions on the coefficient in the spirit of [F. Hirosawa, Math. Ann. 339/4 (2007) 819--839].Comment: 13 page

    Magnonic Quadrupole Topological Insulator in Antiskyrmion Crystals

    Full text link
    When the crystalline symmetries that protect a higher-order topological phase are not preserved at the boundaries of the sample, gapless hinge modes or in-gap corner states cannot be stabilized. Therefore, careful engineering of the sample termination is required. Similarly, magnetic textures, whose quantum fluctuations determine the supported magnonic excitations, tend to relax to new configurations that may also break crystalline symmetries when boundaries are introduced. Here we uncover that antiskyrmion crystals provide an experimentally accessible platform to realize a magnonic topological quadrupole insulator, whose hallmark signature are robust magnonic corner states. Furthermore, we show that tuning an applied magnetic field can trigger the self-assembly of antiskyrmions carrying a fractional topological charge along the sample edges. Crucially, these fractional antiskyrmions restore the symmetries needed to enforce the emergence of the magnonic corner states. Using the machinery of nested Wilson loops, adapted to magnonic systems supported by noncollinear magnetic textures, we demonstrate the quantization of the bulk quadrupole moment, edge dipole moments, and corner charges

    The influence of oscillations on energy estimates for damped wave models with time-dependent propagation speed and dissipation

    Full text link
    The aim of this paper is to derive higher order energy estimates for solutions to the Cauchy problem for damped wave models with time-dependent propagation speed and dissipation. The model of interest is \begin{equation*} u_{tt}-\lambda^2(t)\omega^2(t)\Delta u +\rho(t)\omega(t)u_t=0, \quad u(0,x)=u_0(x), \,\, u_t(0,x)=u_1(x). \end{equation*} The coefficients λ=λ(t)\lambda=\lambda(t) and ρ=ρ(t)\rho=\rho(t) are shape functions and ω=ω(t)\omega=\omega(t) is an oscillating function. If ω(t)1\omega(t)\equiv1 and ρ(t)ut\rho(t)u_t is an "effective" dissipation term, then L2L2L^2-L^2 energy estimates are proved in [2]. In contrast, the main goal of the present paper is to generalize the previous results to coefficients including an oscillating function in the time-dependent coefficients. We will explain how the interplay between the shape functions and oscillating behavior of the coefficient will influence energy estimates.Comment: 37 pages, 2 figure

    Global solvability for semi-discrete Kirchhoff equation

    Full text link
    In this paper, we consider the global solvability and energy conservation for initial value problem of nonlinear semi-discrete wave equation of Kirchhoff type, which is a discretized model of Kirchhoff equation
    corecore